Comparing COPA with CUBIC, BBR for live video upload

Nitin Garg
Software Engineer
Videos Infra, Facebook
Outline

- Motivation
- Experiment Setup and results
- Brief overview of COPA
- Conclusion and future work
Motivation

• Difference video experiences require different latency vs quality trade-off
 • Interactive applications require low end to end latencies.
 • Several other applications can tolerate latency but require high quality.
• Is it possible to have a single Congestion control algorithm compatible with all scenarios?
 • Dial for application to set the throughput vs delay trade-off
• COPA: Delay based congestion control, with a param delta to control delay sensitivity.

An interactive video experience
Experiment setup

• COPA vs BBR vs CUBIC
 • Tuned COPA to optimize for throughput at the expense of delay.

• Tested with FB Live stream application on mobile.
 • Long running flows, P50 duration is around 3 min.

• ABR to change bitrate in response to the network conditions.

• Congestion control algorithms implemented in the Facebook QUIC library.
Experiment setup

- Metrics collected from broadcasts from Android devices all over the world: US, Mexico, India, Vietnam, Indonesia, Thailand and so on.
- Used A/B testing framework to randomly divide users into 3 equal groups.
- Collected roughly 4 million samples for each group over 2 weeks.
Application metrics

Avg Goodput: Num of application bytes successfully sent / duration of broadcast.

Avg Application Observed RTT: Avg of round-trip time taken by ping frames sent by application to FB Live server.
Results: Goodput

Avg Goodput: Num of application bytes successfully sent / duration of broadcast

- P50: Copa +16%, BBR: +5%
- P10: Copa +6%, BBR: +4%
- Positive impact on top-line video watch time / engagement metrics
Results: Video ingest latency

Avg Application Observed RTT: Avg of round-trip time taken by ping frames sent by application to origin.

- **BBR** reduced App RTT most for P50 and below. P50: BBR 8%, COPA 4%
- **COPA** reductions were highest for the worst connections. P90: BBR 0%, COPA 27%
- **COPA** impacted Application ABR to produce more bytes, but kept latencies low.

Confidential Use Only – Do Not Share
COPA

Tunable Delay based congestion control

- **Delta param**: Determines sensitivity to delay.
- Uses RTT variation as a signal for congestion.
- **RTTmin**: min RTT over 10 seconds. Estimate of two way propagation delay for the network path.
- **RTTstanding**: min over srtt/2. Current Round trip time including queueing delays.
- **Queueing delay** = RTTstanding - RTTmin
Tunable Delay based congestion control

COPA

Competitive mode
- Normally delay based CCA lose to buffer filling flows.
- Competitive mode detects presence of buffer filling flows and adjusts delta to be more aggressive.
- We tested without competitive mode.

Once every ack
- Compute Queueing delay \(Dq = RTT_{\text{standing}} - RTT_{\text{min}} \)
- Calculate Target rate = \(1 / (\text{delta} \times Dq) \)
- Adjust \(cwnd = cwnd +/-(v/(\text{delta} \times cwnd)) \)
- Change in one RTT = \((v/\text{delta}) \) packets
- \(V = \) velocity parameter, 1 by default.
COPA
Steady State Dynamics

- Bottleneck queue varies from 0 to $2.5 / \delta$.
- Cycle repeats itself every 5 RTT.
- Steady state queue length $= 1/\delta$.
 - 25 packets at $\delta = 0.04$.
Avg Transport RTT comparison

Avg Transport RTT: Avg of QUIC RTT measurements over the duration of broadcast

- Trend was similar to App RTT measurements.
- BBR reduced transport RTT most for below P50. But the difference is smaller.
- COPA reductions were highest for the worst connections. P90: BBR 8.8%, COPA 38%.
- Shows that COPA not only reduced App RTT, but also RTT for the network.
RTX Overhead

RTX Overhead: Total bytes re-transmitted by transport / total bytes acked by transport, during the broadcast.

- COPA RTX overhead is lower for 90% of broadcasts, indicating where some of the application wins might have come from.
- Grows rapidly for the last 10%. But surprising that we did not see a corresponding degradation in application metrics.
Debugging the tail cases

- Sampling individual traces with a high loss rate showed characteristics like network policed flows.
 - Consistent throughput
 - Low RTT and low RTT variation
- RTX overhead varied greatly by ASN
RTX Overhead and RTT/Queuing delay correlation

- For CUBIC, RTX overhead and RTT/Queuing delays are correlated.
- For COPA, worst RTX overhead broadcasts have low RTT and Queuing delays
RTX Overhead investigation summary

- Strong indication that High RTX for last 10% of users in COPA are due to Network policing.
 - It's possible that there are other reasons too, like short buffers.
- Improvements needed in COPA to reduce loss rates.
 - Competitive mode could help
 - Add a heuristic to change cwnd based on loss, e.g. multiplicative decrease based on target loss.
 - Explicit network policer detection similar to BBR v1
Conclusion and Future work

• Aggregated results show that COPA provided better quality and lower latencies in our tests for mobile broadcasts as compared to CUBIC and BBR with QUIC.
 • With BBR undergoing several changes, results may differ in the future.
• Better understanding for the reasons behind the improvements.
 • Lower RTX overhead?
 • Better target rate estimation and faster convergence?
 • Something else?
• Test on the other extreme of latency vs quality tradeoff: test for ultra-low latency case and compare with alternatives like GCC (Google Congestion Control).
• Test for other use cases such as video playback traffic.
Thank you

- COPA paper: https://www.usenix.org/conference/nsdi18/presentation/arun
- Source code https://github.com/facebookincubator/mvfst/tree/master/quic/congestion_control
- Post with more details https://engineering.fb.com/video-engineering/copa/
- Email: ngarg@fb.com

Thanks to Yang Chi, Subodh Iyengar, Roberto Peon, Kirill Pugin, Marek Latuskiewicz, Udeepta Bordoloi and several others from Video Infra & Traffic Protocols team at Facebook.