Updates on HopAuth Draft
- “Hop-by-Hop Authentication in Content-Centric Networking/Named Data Networking”

draft-li-icnrg-hopauth-01.txt

Ruidong Li, Hitoshi Asaeda

IETF 106 at Singapore
Contents

• Related ICNRG Draft (IETF 105)
 – draft-li-icnrg-hopauth-00: https://tools.ietf.org/html/draft-li-icnrg-hopauth-00 (The designs of HopAuth)

• The present ICNRG Draft (IETF 106)
Updates in v01

• Motivation clarification
• More descriptions on initial trust establishment
Content-Centric Network/Named Data Networking (CCN/NDN)

Packet Types: Interest/Data

Publisher: the entity that publishes data in network.
Consumer: the entity that retrieves data from network.
Copyholder: the entity that provides data to network. (Caching Router or Publisher)
Adversary Model

- **A1 (Content Poisoning Attack):** Impersonate a copy holder to provide fake data
 - Currently, the content is only signed with the key of the entity who publishes it.
 - Consumers may always retrieve the wrong/fake data because routers cannot detect the validity of the data.
 - Necessary: all routers use the authentication service for all forwarded/cached data.

- **A2 (Interest Flooding Attack):** Impersonate a Consumer to request data
 - Much existing work on restricting the Interest sending rate.
 - Necessary: all the Copyholders (Router or Publisher) use the authentication service.
If fake/corrupted data are cached along the path,

Problem 1: Consumers always retrieve the wrong data, because the intermediate routers do not detect the cached data validity (as it’s signed by attacker correctly)

Problem 2: Fake data are further cached, which pollute the routers as virus spreads.

Requirement 1: All routers along the path need to verify the data before caching. But we’d like to avoid heavy and complex tasks and central management systems.

Requirement 2: Consumers need to verify copyholder and path to identify the polluted entities besides data verifications.
If malicious users flood Interests to the network to malfunction routers,

Problem 1: The network may be broken.

Problem 2: Even if malicious Interests can be reduced by rate limit, some malicious Interests still can reach the copyholder, and moreover it is not the ideal solution.

Requirement 1: The last hop routers need to eliminate the chance of Interest flooding attacks without heavy and complex tasks and central management systems.

Requirement 2: Copyholders need to verify the Interests before replying the data.
HopAuth in Summary

• Single mechanism
 – Enable the potential authentications from any consumer to data, copyholder (including publisher), and the data retrieval path
 – Enable routers to authenticate Interest

• Data-oriented mechanism
 – Does not necessarily rely on external server(s)
 • Do not exclude certificate authority (CA) as it contributes to Suspension Chain Model (later)
Self-Certifiable Naming for Initial Trust Establishment

Purpose: to prevent stealing and spoofing of the existing names.

Solution: Public key is embedded into the name to enable it to be self-certifiable. The name owner can use the corresponding private key to assert its ownership and to sign messages sent from the entity with that name.

Notice: an attacker can create a new name from an arbitrary public key. However, the attacker cannot impersonate somebody else's name.
Conclusions

• We update the HopAuth draft on motivations and initial trust establishment.
Thank you!