SRv6 Network Programming Ethernet NH allocation

draft-ietf-spring-srv6-network-programming-05

Authors:

- C. Filsfils (Cisco Systems, Inc.)
- P. Camarillo (Cisco Systems, Inc.)
- J. Leddy
- D. Voyer (Bell Canada)
- S. Matsushima (SoftBank)
- Z. Li (Huawei Technologies)

IETF106 - November 21st 2019

Internet Area WG

New allocation for Ethernet

- No available NextHeader value for Ethernet frames
 - Former revisions of this draft used IPv6 NoNextHeader (59)
 - ...but after WG discussion in 6man/SPRING it was decided to allocate a new codepoint
- Several options discussed in 6man/SPRING
 - Conclusion was to allocate a new codepoint for "Ethernet"
- Ethernet processing:
 - Preamble and Frame Check Sequence are stripped off from the packet upon encapsulation
- Early allocation:
 - Authors have requested early allocation based on RFC7120 procedure
 - Current industry status:
 - Several existing hardware(18) and opensource(8) implementations
 - Several deployments(7)
 - Need to update them to use the new value

Any question?

• Thanks!

SRv6 recap (I)

- New IPv6 Routing Extension Header
 - draft-ietf-6man-segmentrouting-header-26
 - Proposed standard

The Segment Routing Header (SRH) is defined as follows:

0	1	2		3
0 1 2 3 4 5 6 7	8 9 0 1 2 3 4 5	6 7 8 9 0 1	2 3 4 5 6 7 8	9 0 1
+-+-+-+-+-+-+-+	+-+-+-+-+-+-+	+-+-+-+	-+-+-+-+-+	-+-+-+
Next Header	Hdr Ext Len	Routing Typ	e Segments	Left
+-+-+-+-+-+				
Last Entry	Flags		Tag	- 1
+-+-+-+-+-+	+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+	·-+-+-+
				- 1
Segment List[0] (128 bits IPv6 address)				
j				
· +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-				
				- 1
İ				İ
•••				
				- 1
+-				
Segment List[n] (128 bits IPv6 address)				
+-+-+-+-+-+-+-+	+-+-+-+-+-+-	+-+-+-+-+	-+-+-+-+-+-+	-+-+-+
//				//
// Optional Type Length Value objects (variable) /				
//				//
+-				

SRv6 recap (II)

- draft-ietf-spring-srv6-network-programming-05
 - Defines segment behaviors for Traffic Engineering, L3VPN and L2VPN
- General design:
 - Ingress PE encapsulates a packet received from the customer
 - Outer IPv6 header includes SRH with segments for TE and VPN
 - Transit P routers do not perform any SRv6/SRH processing
 - SR Endpoints perform SR processing
 - Egress PE decapsulates packet and forwards based on VRF/CE