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Demo: Web Cache Poisoning
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Demo: Web Cache Poisoning
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RFC 793: TCP Packet Receiving Basics
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RFC 793: TCP Packet Receiving Basics
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RFC 793: TCP Packet Receiving Basics

Conn match Client Server

Attacker

Spoofed packets with the 

correct client port number, 

an in-window SEQ and an 

out-of-window ACK

14

Simplified Processing Logic

Drop
Not Found

Found

Seq # check ReplyOut of window

Ack # check
In window

DropOut of window

Reply

In window
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A Time-Line of TCP Injection Attacks

[[lkm 2007]
[Amir 2012]
IP-ID Counter 
Side Channel

[Qian 2012]
Packet Counter
Side Channel

CVE-2017-13810
MacOS provides dummy 
packet counters
Linux adopts namespace

[This Work 2018]
Timing Side Channel

[Cao 2016]
Challenge ACK

Rate Limit
Side Channel

CVE-2016-5696
Randomize the count 

of Challenge ACK
Per-socket rate limit

Windows finally 
eliminates global 

IP-ID counter 
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Off-Path TCP Injection Attacks

Side Channel Requirement Affected OS Patch/Mitigation
Global IP-ID counter N/A Windows Global IPID counter eliminated

Global challenge ACK rate limit N/A Linux Global rate limit eliminated

Packet counter Malware Linux, MacOS Namespace/dummy counter

Wireless contention (this work) Javascript Any N/A
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Building Blocks of Side Channels
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Building Blocks of Side Channels

• Shared resources
• e.g.,  Global IP-ID counter, Packet counter, Global challenge ACK rate limit
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Building Blocks of Side Channels

• Shared resources
• e.g.,  Global IP-ID counter, Packet counter, Global challenge ACK rate limit

• Shared state changes observable to attackers
• e.g.,  Javascript, Un-priviledged Malware
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Wireless Timing Channel

Full-duplex:                                              

Half-duplex:

§ Half-duplex: A fundamental design of wireless protocol
§ Shared Resource: The half-duplex wireless channel
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Probing Strategy (Cont)
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Probing Strategy (Cont)
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Timing Difference
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Timing Difference (Cont)
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Empirical Test Results

• Setup:

• 4 wireless routers: from Linksys, Huawei, Xiaomi, and Gee 
• 2 machines: 2017 Macbook and 2017 Dell Desktop (Linux)
• 2.4GHz and 5GHz Wi-Fi

Internet

C S

Mallory
Sandboxed

script
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Empirical Test Results (Cont)

(c) RTT measurement of macOS using 
5GHz network of a Huawei router

(b) RTT measurement of macOS using 
2.4GHz network of a Xiaomi router

(a) RTT measurement of Linux using 
5GHz network of a Linksys router
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Port Number Inference 
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Sequence Number Inference 
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TCP Stack Implementations

Table. Behaviors on different OSes when processing 10 identical packets* 

*:See the complete table in our paper

No. OS FLAG SEQ ACK PAYLOAD #Responses

1 Linux ACK|SYN|RST Out-of-window Any 1 10

3 Linux ACK|SYN|RST In-window > SND.MAX Any 0

10 MacOS None|ACK Out-of-window Any Any 10

11 MacOS None In-window Out-of-window Any 0

17 Windows ACK|FIN|SYN Out-of-window Any Any 10

18 Windows ACK|FIN In-window Out-of-window Any 0
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ACK Number Inference

• Implementations of ACK number check varies 

significantly from one OS to another

• Exploit HTTP specifications and behaviors of 

tolerant browsers

• Brute-force ACK number

• Only takes a couple of seconds
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Evaluation

OS Browser Success Rate Avg time cost (s)

Linux Chrome/Firefox 10/10 188.80

MacOS Chrome/Firefox 10/10 48.91

Windows Chrome/Firefox 10/10 43.42

OS Browser Success Rate Avg time cost (s)

MacOS Chrome/Firefox 9/10 304.18

Remote result (RTT = 20ms)

Local result 
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How bad?

• Teleconference with IEEE 802.11 working group
• It’s not possible to be fixed at physical and MAC layers!
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Defenses/Mitigations

• Wireless Layer: Full-duplex Wi-Fi Technology
• E.g., Frequency-division duplexing, different frequency sub-bands
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Defenses/Mitigations

• Wireless Layer: Full-duplex Wi-Fi Technology
• E.g., Frequency-division duplexing, different frequency sub-bands

• TCP Stack: Revisit TCP Specifications
• E.g., Rate limit responses for incoming packets with out-of-window SEQ
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Defenses/Mitigations

• Wireless Layer: Full-duplex Wi-Fi Technology
• E.g., Frequency-division duplexing, different frequency sub-bands

• TCP Stack: Revisit TCP Specifications
• E.g., Rate limit responses for incoming packets with out-of-window SEQ

• Application Layer: Deploy HSTS (HTTP Strict Transport Security)
• Preventing access via the insecure HTTP protocol

40



Defenses/Mitigations
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Conclusion

• A new timing side channel inherent in all generations of IEEE 802.11 
or Wi-Fi technology
• Comprehensive analysis of TCP stack implementations in macOS, 

Windows, and Linux
• Implement practical TCP injection attacks
• Propose possible defenses
• https://github.com/seclab-ucr/tcp_exploit
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Q&A

Thanks for your attention!
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