
Off-Path TCP Exploit: How
Wireless Routers Can Jeopardize

Your Secrets
Weiteng Chen, Zhiyun Qian

University of California, Riverside

1

Threat Model

2

Client Server

Mallory

Internet

Threat Model

3

Client Server

Mallory

Internet

Threat Model

4

Client Server

Mallory

Internet

Javascript

Threat Model

5

Client Server

Mallory

Internet

Javascript

Threat Model

6

Client Server

Mallory

Internet

Javascript

MitM attack

Threat Model

7

Client Server

Mallory

Internet

Javascript Spoofed
Packets

Threat Model

8

Client Server

Mallory

Internet

Javascript Spoofed
Packets

Feedback

Threat Model

9

Client Server

Mallory

Internet

Javascript Spoofed
Packets

Feedback

Cached!

Demo: Web Cache Poisoning

10

Demo: Web Cache Poisoning

11

An injected login
component!

RFC 793: TCP Packet Receiving Basics

Conn match Client Server

Attacker

Spoofed packets with

server’s IP

12

Simplified Processing Logic

Drop
Not Found

Found

Seq # check ReplyOut of window

Ack # check
In window

DropOut of window

Reply

In window

RFC 793: TCP Packet Receiving Basics

Conn match Client Server

Attacker

Spoofed packets with the

correct client port number

and an out-of-window SEQ

13

Simplified Processing Logic

Drop
Not Found

Found

Seq # check ReplyOut of window

Ack # check
In window

DropOut of window

Reply

In window

Reply

RFC 793: TCP Packet Receiving Basics

Conn match Client Server

Attacker

Spoofed packets with the

correct client port number,

an in-window SEQ and an

out-of-window ACK

14

Simplified Processing Logic

Drop
Not Found

Found

Seq # check ReplyOut of window

Ack # check
In window

DropOut of window

Reply

In window

RFC 793: TCP Packet Receiving Basics

Conn match Client Server

Attacker

Spoofed packets with

server’s IP

15

Simplified Processing Logic

Drop
Not Found

Found

Seq # check ReplyOut of window

Ack # check
In window

DropOut of window

Reply

In window

A Time-Line of TCP Injection Attacks

[[lkm 2007]
[Amir 2012]
IP-ID Counter
Side Channel

[Qian 2012]
Packet Counter
Side Channel

CVE-2017-13810
MacOS provides dummy
packet counters
Linux adopts namespace

[This Work 2018]
Timing Side Channel

[Cao 2016]
Challenge ACK

Rate Limit
Side Channel

CVE-2016-5696
Randomize the count

of Challenge ACK
Per-socket rate limit

Windows finally
eliminates global

IP-ID counter

16

Off-Path TCP Injection Attacks

Side Channel Requirement Affected OS Patch/Mitigation
Global IP-ID counter N/A Windows Global IPID counter eliminated

Global challenge ACK rate limit N/A Linux Global rate limit eliminated

Packet counter Malware Linux, MacOS Namespace/dummy counter

Wireless contention (this work) Javascript Any N/A

17

Building Blocks of Side Channels

18

Building Blocks of Side Channels

• Shared resources
• e.g., Global IP-ID counter, Packet counter, Global challenge ACK rate limit

19

Building Blocks of Side Channels

• Shared resources
• e.g., Global IP-ID counter, Packet counter, Global challenge ACK rate limit

• Shared state changes observable to attackers
• e.g., Javascript, Un-priviledged Malware

20

Wireless Timing Channel

Full-duplex:

Half-duplex:

§ Half-duplex: A fundamental design of wireless protocol
§ Shared Resource: The half-duplex wireless channel

21

Probing Strategy

Client

Router

Attacker

Server

Half
Duplex

Full
Duplex

Not trigger ACK

Legitimate Packets

Spoofed Packets

22

Probing Strategy

Client

Router

Attacker

Server

Half
Duplex

Full
Duplex

X

Not trigger ACK

Legitimate Packets

Spoofed Packets

23

Probing Strategy

Client

Router

Attacker

Server

Half
Duplex

Full
Duplex

X

Not trigger ACK
Round Trip Time

Legitimate Packets

Spoofed Packets

24

Probing Strategy (Cont)

Client

Router

Attacker

Server

Half
Duplex

Full
Duplex

X

trigger ACK

Legitimate Packets

Spoofed Packets

25

Probing Strategy (Cont)

Client

Router

Attacker

Server

Half
Duplex

Full
Duplex

X

trigger ACK
Round Trip Time

X

Legitimate Packets

Spoofed Packets

26

Timing Difference

RTT_1 RTT_2

Half
Duplex

Client

Router

Attacker

X

Pre-
Probe Q

uery

Post-
Probe Q

uery

No ACKs Triggering ACKs

X
X

Pre-
Probe Q

uery

Post-
Probe Q

uery

Not Trigger ACK Trigger ACK

Delayed

Corresponding
Response

Failed
Transmission

Probe

Server

Full
Duplex

• Larger RTT è Trigger ACK è Correct Sequence Number ?

Timing Difference (Cont)

Half
Duplex

Client

Router

Attacker

X

Pre-
Probe Q

uery

RTT_1

Full
Duplex

RTT_2

No ACK Multiple ACKs

Not Trigger ACK Trigger ACK

Delayed

Corresponding
Response

Failed
Transmission

Probe

Post-
Probe Q

uery

Pre-
Probe Q

uery

Post-
Probe Q

uery

X

X

X

X

Server

• More Probing Packets è More Contention è Larger RTTs

Empirical Test Results

• Setup:

• 4 wireless routers: from Linksys, Huawei, Xiaomi, and Gee
• 2 machines: 2017 Macbook and 2017 Dell Desktop (Linux)
• 2.4GHz and 5GHz Wi-Fi

Internet

C S

Mallory
Sandboxed

script

29

Empirical Test Results (Cont)

(c) RTT measurement of macOS using
5GHz network of a Huawei router

(b) RTT measurement of macOS using
2.4GHz network of a Xiaomi router

(a) RTT measurement of Linux using
5GHz network of a Linksys router

30

Ti
m

e(
m

s)

Number of Packets

31
Ti

m
e(

m
s)

Number of Packets
RTT measurement of macOS using 5GHz network of a Xiaomi router

at two different locations with RTTs over 20ms

Empirical Test Results (Cont)

Port Number Inference

32

Client Server

Attacker

Spoofed packets with server’s

IP and a guessed src port

Has connection No connection

Client Server

Attacker

Spoofed packets with server’s

IP and a guessed src port

Sequence Number Inference

33

Client Server

Attacker

Spoofed packets with server’s

IP and a guessed seq#

Seq in-window Seq out-of-window

Client Server

Attacker

Spoofed packets with server’s

IP and a guessed seq#

TCP Stack Implementations

Table. Behaviors on different OSes when processing 10 identical packets*

*:See the complete table in our paper

No. OS FLAG SEQ ACK PAYLOAD #Responses

1 Linux ACK|SYN|RST Out-of-window Any 1 10

3 Linux ACK|SYN|RST In-window > SND.MAX Any 0

10 MacOS None|ACK Out-of-window Any Any 10

11 MacOS None In-window Out-of-window Any 0

17 Windows ACK|FIN|SYN Out-of-window Any Any 10

18 Windows ACK|FIN In-window Out-of-window Any 0

34

ACK Number Inference

• Implementations of ACK number check varies

significantly from one OS to another

• Exploit HTTP specifications and behaviors of

tolerant browsers

• Brute-force ACK number

• Only takes a couple of seconds

35

Evaluation

OS Browser Success Rate Avg time cost (s)

Linux Chrome/Firefox 10/10 188.80

MacOS Chrome/Firefox 10/10 48.91

Windows Chrome/Firefox 10/10 43.42

OS Browser Success Rate Avg time cost (s)

MacOS Chrome/Firefox 9/10 304.18

Remote result (RTT = 20ms)

Local result

36

How bad?

• Teleconference with IEEE 802.11 working group
• It’s not possible to be fixed at physical and MAC layers!

37

Defenses/Mitigations

• Wireless Layer: Full-duplex Wi-Fi Technology
• E.g., Frequency-division duplexing, different frequency sub-bands

38

Defenses/Mitigations

• Wireless Layer: Full-duplex Wi-Fi Technology
• E.g., Frequency-division duplexing, different frequency sub-bands

• TCP Stack: Revisit TCP Specifications
• E.g., Rate limit responses for incoming packets with out-of-window SEQ

39

Defenses/Mitigations

• Wireless Layer: Full-duplex Wi-Fi Technology
• E.g., Frequency-division duplexing, different frequency sub-bands

• TCP Stack: Revisit TCP Specifications
• E.g., Rate limit responses for incoming packets with out-of-window SEQ

• Application Layer: Deploy HSTS (HTTP Strict Transport Security)
• Preventing access via the insecure HTTP protocol

40

Defenses/Mitigations

41

Conclusion

• A new timing side channel inherent in all generations of IEEE 802.11
or Wi-Fi technology
• Comprehensive analysis of TCP stack implementations in macOS,

Windows, and Linux
• Implement practical TCP injection attacks
• Propose possible defenses
• https://github.com/seclab-ucr/tcp_exploit

42

Q&A

Thanks for your attention!

43

