|[EEE P802.1ABdh Update to LSVP
(Note: P802.1ABdh == LLDPv2)

IETF-106
Singapore
Paul Congdon (Tallac Networks)
Paul Bottorff (Aruba)
November 19, 2019

Disclaimer

* This presentation should be considered as the personal view of the
presenter not as a formal position, explanation, or interpretation of
|IEEE.

* Per IEEE-SA Standards Board Bylaws, December 2017

e “At lectures, symposia, seminars, or educational courses, an individual
presenting information on |IEEE standards shall make it clear that his or
her views should be considered the personal views of that individual rather
than the formal position of IEEE.”

Background - References

* Previous update at IETF-105 with previous background —July 2019
* https://datatracker.ietf.org/meeting/105/materials/slides-105-Isvr-2-ieee-lldpv2-update

* |EEE 802 approval to start P802.1ABdh — Standard for Local and Metropolitan
Area Networks - Station and Media Access Control Connectivity Discovery
Amendment: Support for Multiframe Protocol Data Units — September 2019

* https://standards.ieee.org/project/802 1ABdh.html

* Most recent technical proposal was presented in September 2019
* http://www.ieee802.org/1/files/public/docs2019/dh-bottorff-alt-0919-v4.pdf

* Draft to define IETF TLVs for LSVR intended to be carried by LLDPv2
e https://tools.ietf.org/html/draft-congdon-Isvr-lldp-tlvs-00

* Call for Participation press release by IEEE 802 - TBD

https://datatracker.ietf.org/meeting/105/materials/slides-105-lsvr-2-ieee-lldpv2-update
https://standards.ieee.org/project/802_1ABdh.html
http://www.ieee802.org/1/files/public/docs2019/dh-bottorff-alt-0919-v4.pdf
https://tools.ietf.org/html/draft-congdon-lsvr-lldp-tlvs-00

Technical changes since IETF-105 update

* Terminology and definitions
* Manifest definition changes to support larger databases
* Review of Shared Media worst case scenarios (see IEEE contribution)

Objectives for New LLDPv2 Method

Support LLDP databases larger than a single frame
e Optimize LLDPv2 for databases around 100K bytes
* For reference IETF currently believes database sizes around 64K bytes are sufficient

Support the ability to limit the LLDP frame size to meet timing constraints imposed by
some TSN applications

* Do we need to split TLVs over multiple PDUs?
* How big do these databases need to be?

Support the ability to communicate with an LLDPv1 implementation
* Only the LLDPv1 database would be exchanged between and LLDPv1 and LLDPv2 implementation

Support shared media, optimize for point-to-point though allows shared
* Duplicate MAC addressing should be handled by the extension protocol

Ensure the integrity of the full set of TLVs received by partners

Do we also need to provide a means to authenticate the LLDP database? The IETF has this
requirement.

Objectives for New LLDPv2 Method

» Support pacing of PDUs to receivers to prevent overloading low level network
firmware

 Historically OSPF and IS-IS have had problems from lack of flow and congestion management

* Reduce network traffic by reducing periodic transmission to the minimum
* Only update the foundation LLDPv1 PDU periodically
* Extension PDUs are only transmitted/updated on demand from receivers
* Update extension PDUs only when they have changed

* Other optimizations and considerations which might be useful
 Computational load requirements for LLDPv2 receivers to update and validate PDUs
e Larger TLVs or is using multiple TLVs appears sufficient
* TLVs spanning multiple extension database PDUs, is this required for TSN

» Database authentication, is high want for IETF and other applications
* Part of separate authentication extension
* Key exchange requirements

Current LLDP operation reminder

LLDP Agent LLDP Agent
Remote MIB Local MIB Local MIB Remote MIB
| |
ChassisID |+ ChassisID ChassisID ChassisID
PortID — PortID PortID PortID
TTL — TTL TTL TTL
rxInfoTTL rxInfoTTL
AA = f
1 o
| . £ —
I txTTR rxProcessFrame()
I
1 =
: v j
------------ rxProcessFrame() D txTTR
SomethingChangedRemote() _
1 rxProcess_Frame() < SomethingChangedLocal()

NOTE: Think of the Remote and Local MIBs as a database that must fit into a single PDU
Replace all values of the Remote MIB with contents of LLDPDU when something changes

Proposal: Foundation PDU (F-PDU)

* The current LLDPv1 PDU with a Manifest TLV is the foundation PDU (F-PDU)

* The foundation PDU is exchanged using the existing LLDPv1 protocol without modifications
* All databases are created as LLDPv1 databases, no extension PDUs create new databases

* An extended LLDP database is composed of the foundation PDU and n-1 extension PDUs

* A manifest TLV placed in the LLDPv1 foundation PDU identifies all extension PDUs

. g‘ nobmanifest TLV is present in the foundation PDU then no extension PDUs exist for the LLDP
atabase

* The upper limit to the number of PDUs is determined by the LLDPv1 TLV size limit (512) and
the format of the manifest TLV

* Note: When we have a small max PDU size the manifest TLV size can be further limited resulting in limiting the database size

* The manifest TLV carries an identifier for each extension PDU

* Any change in an extension PDU is reflected as a change in the manifest TLV, therefore any
change in an extension PDU will result in a change to the foundation PDU

Proposal: Extension PDUs (X-PDUs)

The extension LLDPDU will be ignored by LLDPv1
* An alternate Ethertype is used for LLDPv2 PDUs to guarantee PDUs are never directed to LLDPv1

Each extension PDU has three mandatory TLVs in the beginning of the PDU:
* Each extension PDU contains the first two mandatory TLVs of a LLDPDUv1 (ChassisID + PortID)
* Each extension PDU contains a new extension TLV that identifies the PDU
» Before an extension PDU is added to a database it’s {ChassisID, PortID, ExtensionID} must match the manifest
TLV
Each extension PDU is transmitted as a unicast in response to a receiver request
* Extension PDUs are only transmitted in response to requests
* The DA of an Extension PDU is the SA of the request

The TTL in foundation PDU relates to all extension PDUs

Proposal: Extension Request PDU (XREQ-PDU)

* The extension Request PDU will be ignored by LLDPv1
* An alternate Ethertype is used for LLDPv2 PDUs to guarantee PDUs are never directed to LLDPv1

* Each extension request PDU has three mandatory TLVs in the beginning of the PDU:
* Each contains the first two mandatory TLVs of a LLDPDU (ChassisID + PortID)
However the ChassisID and PortID are for the destination rather than the source
* Each contains a new extension request TLV that identifies the PDUs a list of extension PDU to be transmitted

* An extension request (XREQ-PDU) is sent between peers to request transmission of an extension PDU
* The LLDP extension protocol supports multiple peers on a shared media
* Transmission of X-PDUs is only in response to an XREQ-PDU generated by the receiving system

* Areceivers requests X-PDU transmission when it determines the current X-PDU does not match the
manifest TLV

* Receivers can have only a single XREQ-PDU pending at a time
* Asingle XREQ-PDU can request transmission of multiple X-PDUs

* The receiver controls the transmission rate by controlling the number of X-PDUs requested and the
timing between XREQ-PDUs

* Receivers time out the requested X-PDU responses

* Transmitters periodically send the foundation F-PDU which can update the manifest TLV in turn
resulting XREQs for X-PDUs

Each extension request PDU is transmitted as a unicast
* The DA of an extension request PDU is the SA of the foundation PDU

LLDP Extension Operation Proposal: Receiver Pacing

LLDP Agent LLDP Agent
Remote MIB Local MIB Local MIB Remote MIB
1 isID n 1
ChassisID ngsri:SDI ChassisID ChasssD
PortlD | PortID PoriD
TTL TTL

TTL [] Manifest i TIL [
Manifest [Manifest Manifest |-

O O

rxinfoTTL _ rxinfoTTL
SomethingChangedLocal() > = SomethingChanEedRemote()
rxProcessPDU())
g rxProcessManifest() —
rxProcessXREQ() <« Extension Request PDU — @ rxExtTTR Eg _T
% — EE— — rxProcesiEtPDU()
rXProcessXREQ() <—| brtension feauest U —— {1) nExtTTR = j
— Extension PDU — rxProcessExtPDU()
= A
@ == I
tTTR > rxProcessPDU() = = = = = = = = = = = = = !

NOTE: Send LLDPDU as specified by LLDPv1 when something changes and periodically
Only send extension LLDPDU when explicitly requested by a XREQ
Only issue XREQ when manifest shows the local copy is out of date

LLDPv2 Project (P802.1ABdh) Next Steps

* Continued technical contributions
* Would love to have an Open Source implementation for evaluation

* Review areas of change to IEEE Std IEEE 802.1AB-2016 (aka LLDP)
* Initial draft by an individual contributor
* Assign editor in 802.1 Working Group

Backup - Details

I\/Iamfes|t TLV: Added to the Foundation LLDPv1 P

n*6+4 N*6+5 N*6+6 n*6+10
: . Number of Extension Extension .
TLV type TV |.nformat|on = | Extension | LLDpPDU LLDPDU Extension PDU
= MAN String length) DUs = ™ b .. Check
(7 bits) (9 bits) “| PRUs=n | @ Number | Revision (32 bits)
(7 bits) (7 bits) (8 bits)

DU

Extension PDU Descriptor
repeat n times (0 <= n <= 84)

* Number of extension PDUs indicates the number of valid PDU descriptors in the manifest
* Some implementations may fix the manifest TLV size however load it with a variable number of PDUs

* If we don’t need to hold the manifest TLV size constant, then the TLV length is sufficient to determine
the number of manifest entries

* Each Extension PDU is identified by a:

* Extension LLDPDU number, this number is included in the manifest to facilitate PDU deletion and

insertion

* Extension LLDPDU revision, updated modulo 256 on every change to the extension LLDPDU

* Extension LLDPDU check: for example 32 bits of MD5

Format for LLDP Extension PDUs (X-PDU)

LLDP ChassisID PortID Extension Ootional Obtional End of
DA SA Extension TLV TLV Identifier pTLV e pTLV LLDPDU
Ethertype (source) (source) TLV TLV
M M M
< Ethernet Header >le LLDP Extension PDU >

LLDPv2 Ethertype
* New LLDPv2 Ethertype for Extension PDUs prevents conflict with LLDPv1
* Extension PDUs are identified by the presence of the Extension Desc TLV

. 3inc_e caxtensions are not multicast and only delivered on request no new Ethertype is required, though one could be used if
esire

Chassis ID + Port ID are mandatory
* The Chassid ID and Port ID of the PDU source
* Note TTL from 1t PDU should apply and is not needed here

Extension Identifier TLV is mandatory and must be the third TLV
* |dentifies this Extension PDU, the PDU revision

Extension PDU [dentifier TLV (XID TLV):

TLV type TLV information Extension Extension
) » PDU PDU
= DESC String length B b -
(7 bits) (9 bits) Number ReV|§|on
(7 bits) (8 bits)
« TLV Header e TLV info >

e Extension PDU Number is the designation number for this PDU
 The PDU number is in the range from 1 — 84
* Matched to the manifest extension PDU number

* Extension PDU revision number
* Incremented modulo 256 whenever the extension LLDPDU is changed
* Matched to the manifest to guarantee the extension LLDPDU is the one represented in the manifest

* Note the extension PDU check code is not carried in the Extension TLV and so must be
calculated to match the manifest check code

Request For Extension PDUs (XREQ-PDU)

LLDP ChassisID PortID End of
DA SA Extension TLV TLV XREQ TLV LLDPDU
Ethertype (destination) | (destination) TLV
M M M
Ethernet Header >le LLDP Extension PDU >

e LLDP Extension Ethertype
 New LLDP Ethertype for Extension PDUs to prevent conflict with LLDPv1 implementations

* ChasssisID and PortID TLVs are mandatory in a Request for Extension PDU
e ChassisID is the first and PortID is the second TLV in the PDU
* Unlike a standard LLDPDU the ChassisID and PortID identify the destination not the source

* Extension Request TLV is mandatory in a Request for Extension PDU
* The Extension Request TLV is the third TLV in the PDU
* Request PDUs are identified by the presence of the Request for Extension TLV

Extension Request PDUs TLV (XREQ TLV)

* Extension Request PDUs

* A given chassis/port may only have a single XREQ TLV pending at a time

1 | 2 3 6
TLV type TLV information Request | & Request PDUs
= DESC String length Number | & bitmap
(7 bits) (9 bits) (8 bits) o (84 bits)
¢ TLV Header >le TLV information string —_—

22

* Multiple XREQs PDUs may be used to pace the PDUs at the receiver by withholding XREQs
* Asingle XREQ PDU may request multiple Extension PDUs if the receiver has sufficient buffer for them

* The bit map is used to identify the list of Extension LLDPDUs by number
* The index to the bit map identifies the Extension LLDPDU number

* Extension LLDPDUs are not multicast, instead they are unicast

* The extension LLDPDUs are sent to the SA address within the foundation LLDPDU
* On ashared media each individual LLDP Agent must provide independent requests for extension frames
* This allows the individual receivers to pace PDUs at rates that match their ability to handle the reception

