

Characterizing JSON Traffic Patterns on a CDN

Santiago Vargas, Utkarsh Goel, Moritz Steiner, Aruna Balasubramanian

* Stony Brook University

JSON Traffic is Growing on Akamai's CDN

- JSON is 4x more requested that HTML
- JSON a the leading content type on Akamai's CDN

What is JSON?

JSON is a text-based data format

Motivation

- Little is known about JSON usage
- Optimizations exist for types of content, ie. browsing and media content. Unsure if these apply to JSON content

Akamai's Network as a Vantage Point

- Collect HTTP request logs from Akamai edge servers
 - Data Fields: Mime Type, Time of Request, User-Agent, Caching Information, HTTP Method, URL, Anonymized IP
- Collect 2 datasets:

Dataset	# of Logs	Duration	# of Domains
Short-term	25 million	10 mins	~5k
Long-term	10 million	24 hours	~170

- <u>Short-term</u> wide network coverage for overall characterization
- <u>Long-term</u> wide temporal coverage for pattern characterization

FAR

REYOND

Stony Brook University

Extracting Our Data

• Develop a taxonomy to look at JSON traffic on different dimensions:

Stony Brook University

Extracting Our Data

• Develop a taxonomy to look at JSON traffic on different dimensions:

- Device/Application
- Machine-Generated
- Request Type
- Response Type

What Devices Request JSON?

- Majority of JSON is from mobile smartphones and embedded devices (>64%)
 - Embedded devices include game consoles, wearables, and smart appliances
- 88% of JSON is non-browser

Identifying Machine Traffic

 Autocorrelation techniques identify 6% of JSON traffic is requested periodically

- Machine-to-machine traffic
 - 78% upload traffic & 56% uncacheable
 - One optimization avenue: Deprioritize machine traffic that is not QoE sensitive

Does Caching Help?

- Majority (84%) of requests are downloads making them ideal for caching
 - 55% of requests are uncacheable

• 50% of domains don't use caching for JSON

Does Caching Help?

- Majority (84%) of requests are downloads making them ideal for caching
 - 55% of requests are uncacheable
 - 50% of domains don't use caching for JSON

Since caching doesn't help JSON content delivery for specific industries, can other optimizations help?

Using Dependencies as avenue for optimization

• Dependencies Example:

Requests for JSON Object **A** then **B** then **C**

<u>Question:</u> Given request for A, can we predict object B will be requested next?

• Methodology: Cluster objects with similar URLs

a.com/abc123/profile a.com//ef456/profile a.com/*/profile Clustered URL

 Results: 90% accuracy using ngram model for clustered URLs^{*}

Analyzing these patterns can inform Prefetching, Server Push, Anomaly Detection systems

Conclusions

- JSON is becoming a leading content type on the Web
- Majority of JSON is from mobile & embedded devices and is non-browser
- Avenues for optimization:
 - Periodic machine-to-machine traffic can be deprioritized
 - JSON has ordering patterns that can be predicted

