MATHMESH BOF

Phillip Hallam-Baker

10am Monday Collyer

Make computers easy to use by making them more secure

- Cryptographically connect every device Alice owns to each other
 - Alice's personal Mesh
 - Use that framework to authenticate maintenance messages
 - Enable use of strong end-to-end encryption

• 3 Core problems

- Provision private keys to devices
- Provide the means to obtain and validate public keys
- Secure data at rest

Security today

- SSH
- OpenPGP, S/MIME
- Signal, Keybase, WhatsApp, etc. etc.
- Anti-virus
- NAT / VPN
- Spam filtering
- Separate products, separate dashboards
 - Security falls between the cracks

Why choose passwords?

Mesh Password Catalog

- Test application, provides 90% coverage
 - Requires minimal additional code for use
- Immediate value
 - Does not rely on network effect
 - Addresses 'functional password' problem
- An open standard for a good password vault
 - Enables use of strong (128 bit WF) passwords
 - Provides path to replace passwords (public keypair provisioned)

Alice's Personal Mesh (Technical view)

- Make Alice her own ultimate root of trust
 - She can delegate trust to a 3rd party
 - Can reclaim her autonomy at any time
 - Alice creates a personal Mesh profile
 - Master Signature Key
 - Never changes
 - Is only used to sign (infrequent) updates to Alice's Mesh profile
 - May be stored offline
 - Administration keys
 - Used by administration devices to sign device connection assertions

Alice's Personal Mesh (User view)

- Alice installs application on her mobile phone
 - Creates account alice@example.com
- Alice can add more devices
 - By scanning a QR code
 - By installing an app and requesting connection to alice@example.com
 - New device shows AA4W-JXKO-TG2S-JSDH-7AYY-BY5Q-UPH4
 - Admin device shows AA4W-JXKO-TG2S-JSDH-7AYY-BY5Q-UPH4
 - They are the same, Alice accepts, device is connected

Connected devices can access shared catalogs

- Every connected device has the same world view
 - Alice can use a personalized vocabulary with voice activated devices
 - "Zen, turn on lights in the yellow room"
 - The term 'yellow room' is in Alice's contacts file, it is personal to her
 - Add/change a task, contact, bookmark, password on one device
 - Every other connected device has access
- Every connected device can authenticate messages as being 'of Alice'
 - Can establish a single dashboard for her IoT devices

Mesh Components

- Mesh Schema
 - Capabilities similar to SAML/PKIX
 - Uses JSON data model
- Mesh Account
 - Alice has one Mesh but 4 separate accounts (business/personal/restaurant)
 - These accounts belong to Alice
- Mesh Service
 - Synchronization of Catalogs
 - Always available point of contact for messaging

Discuss: Mesh overview

- Web site
 - Mathmesh.com
- YouTube Channel
 - 7 hours of video
- Technology items still to come
 - UDF
 - DARE
 - Meta-Cryptography

UDF

Cryptography on Rails

BASE-32 encoding of cryptographic data

• Content Digest

- MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4
- KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN
- Message Authentication Code
 - AA4W-JXKO-TG2S-JSDH-7AYY-BY5Q-UPH4
- Symmetric Encryption Key
 - EDUL-JOAU-5HCC-F233-F5CT-JX64-3F5Q
- Public Key Pair
 - ZAAQ-AWMQ-6Z40-RRMM-Y72J-CGWI-ZC7L-V5Y
- Shamir Secret Share
 - SAQH-4253-OUIQ-QB3Z-FEU5-V3V3-D75X-S

Cryptography on rails

- All Mesh key-ids are Content-Digest UDFs
 - SHA-2-512 digest of the key
 - No PKIX Path-Math complications

Encrypted QR Code

- udf://example.com/ECXI-SNKI-GDCM-2DCP-WPBG-KNNQ-Z2NJ-WI
- udf://example.com
 - Try DNS Service Discovery SRV/TXT resolution
 - https://example.com/.well-known/mmm-udf/ <UDF ("ECXI-...-WI")>
 - MB7N-KULZ-C5WW-EOYW-SLTL-JJTU-LKND-SOXY-YHSI-KQE6-Z4FS-YRGE-UVBD-PRPV
- Fetch document, it is encrypted
 - The decryption key is ECXI-SNKI-GDCM-2DCP-WPBG-KNNQ-Z2NJ-WI

For more information

- Web site
 - Mathmesh.com
- YouTube Channel
 - 7 hours of video

DARE

Blockchain in JSON

Data At Rest Envelope

- PKCS#7 for JSON Signature & Encryption (JOSE)
 - Re-uses the same crypto
 - Mesh uses standard Encryption, Signature and Verification
 - Decryption changes
 - Key provisioning changes
 - Uses KDF (<master secret>, <nonce>) to derive
 - IV and Encryption
 - MAC Key (if needed)
 - Signature witness value (to provide plaintext binding)

DARE Sequence

- Append only log format
 - Incremental authentication (Merkle Tree)
 - Can sign head of chain
 - Incremental encryption
 - Can encrypt 100 envelopes under same <master secret>
 - Just use a different nonce
- Can support an archive format
 - (Used as a test mule)

Dare Catalog

- Persistence store based on DARE Sequence
 - A set of cataloged objects with a unique ID
 - Sequence of Add/Update/Delete transactions
 - Objects may be encrypted
 - Can discuss exact encryption boundary offline.
- Synchronize a DARE catalog by synchronizing DARE sequence
 - Mesh Service protocol is very simple
 - Status/Upload/Download

For more information

- Web site
 - Mathmesh.com
- YouTube Channel
 - 7 hours of video

Meta Cryptography

Web 2.0 Rebranding for threshold cryptography etc.

Key Combination

Snowden-Proof Key Management

- Cloud service can control decryption
 - But cannot decrypt
 - The cloud only knows a random number
 - Can be generated without knowledge of private key

For more information

- Web site
 - Mathmesh.com
- YouTube Channel
 - 7 hours of video