MATHMESH BOF

Phillip Hallam-Baker

10am Monday Collyer
Make computers easy to use by making them more secure

- Cryptographically connect every device Alice owns to each other
 - Alice’s personal Mesh
 - Use that framework to authenticate maintenance messages
 - Enable use of strong end-to-end encryption

- 3 Core problems
 - Provision private keys to devices
 - Provide the means to obtain and validate public keys
 - Secure data at rest
Security today

• SSH
• OpenPGP, S/MIME
• Signal, Keybase, WhatsApp, etc. etc.
• Anti-virus
• NAT / VPN
• Spam filtering

• Separate products, separate dashboards
 • Security falls between the cracks
Why choose passwords?

Sorry but your password must contain an uppercase letter, a number, a haiku, a gang sign, a hieroglyph, and the blood of a virgin.
Mesh Password Catalog

• Test application, provides 90% coverage
 • Requires minimal additional code for use

• Immediate value
 • Does not rely on network effect
 • Addresses ‘functional password’ problem

• An open standard for a good password vault
 • Enables use of strong (128 bit WF) passwords
 • **Provides path to replace passwords (public keypair provisioned)**
Alice’s Personal Mesh (Technical view)

• Make Alice her own ultimate root of trust
 • She can delegate trust to a 3rd party
 • Can reclaim her autonomy at any time

• Alice creates a personal Mesh profile
 • Master Signature Key
 • Never changes
 • Is only used to sign (infrequent) updates to Alice’s Mesh profile
 • May be stored offline
 • Administration keys
 • Used by administration devices to sign device connection assertions
Alice’s Personal Mesh (User view)

• Alice installs application on her mobile phone
 • Creates account alice@example.com

• Alice can add more devices
 • By scanning a QR code
 • By installing an app and requesting connection to alice@example.com
 • New device shows AA4W-JXKO-TG2S-JSDH-7AYY-BY5Q-UPH4
 • Admin device shows AA4W-JXKO-TG2S-JSDH-7AYY-BY5Q-UPH4
 • They are the same, Alice accepts, device is connected
Connected devices can access shared catalogs

• Every connected device has the same world view
 • Alice can use a personalized vocabulary with voice activated devices
 • “Zen, turn on lights in the yellow room”
 • The term ‘yellow room’ is in Alice’s contacts file, it is personal to her

• Add/change a task, contact, bookmark, password on one device
 • Every other connected device has access

• Every connected device can authenticate messages as being ‘of Alice’
 • Can establish a single dashboard for her IoT devices
Mesh Components

• Mesh Schema
 • Capabilities similar to SAML/PKIX
 • Uses JSON data model

• Mesh Account
 • Alice has one Mesh but 4 separate accounts (business/personal/restaurant)
 • These accounts belong to Alice

• Mesh Service
 • Synchronization of Catalogs
 • Always available point of contact for messaging
Discuss: Mesh overview

- Web site
 - Mathmesh.com
- YouTube Channel
 - 7 hours of video

- Technology items still to come
 - UDF
 - DARE
 - Meta-Cryptography
UDF
Cryptography on Rails
BASE-32 encoding of cryptographic data

• Content Digest
 • MB5S-R4AJ-3FBT-7NHO-T26Z-2E6Y-WFH4
 • KCM5-7VB6-IJXJ-WKHX-NZQF-OKGZ-EWVN

• Message Authentication Code
 • AA4W-JXKO-TG2S-JSDH-7AYY-BY5Q-UPH4

• Symmetric Encryption Key
 • EDUL-JOAU-5HCC-F233-F5CT-JX64-3F5Q

• Public Key Pair
 • ZAAQ-AWMQ-6Z4O-RRMM-Y72J-CGWI-ZC7L-V5Y

• Shamir Secret Share
 • SAQH-4253-OUIQ-QB3Z-FEU5-V3V3-D75X-S
Cryptography on rails

• All Mesh key-ids are Content-Digest UDFs
 • SHA-2-512 digest of the key
 • No PKIX Path-Math complications
Encrypted QR Code

• udf://example.com/ECXI-SNKI-GDCM-2DCP-WPBG-KNNQ-Z2NJ-WI

• udf://example.com
 • Try DNS Service Discovery SRV/TXT resolution
 • https://example.com/.well-known/mmm-udf/ <UDF (“ECXI-…-WI””)
 • MB7N-KULZ-C5WW-EOYW-SLTL-JJU-LKND-SOXY-YHSI-KQ6E-Z4FS-YRGE-UVBD-PRPV

• Fetch document, it is encrypted
 • The decryption key is ECXI-SNKI-GDCM-2DCP-WPBG-KNNQ-Z2NJ-WI
For more information

• Web site
 • Mathmesh.com

• YouTube Channel
 • 7 hours of video
DARE
Blockchain in JSON
Data At Rest Envelope

- PKCS#7 for JSON Signature & Encryption (JOSE)
 - Re-uses the same crypto
 - Mesh uses standard Encryption, Signature and Verification
 - Decryption changes
 - Key provisioning changes

- Uses KDF (<master secret>, <nonce>) to derive
 - IV and Encryption
 - MAC Key (if needed)
 - Signature witness value (to provide plaintext binding)
DARE Sequence

• Append only log format
 • Incremental authentication (Merkle Tree)
 • Can sign head of chain
 • Incremental encryption
 • Can encrypt 100 envelopes under same <master secret>
 • Just use a different nonce

• Can support an archive format
 • (Used as a test mule)
Dare Catalog

• Persistence store based on DARE Sequence
 • A set of cataloged objects with a unique ID
 • Sequence of Add/Update/Delete transactions
 • Objects may be encrypted
 • Can discuss exact encryption boundary offline.

• Synchronize a DARE catalog by synchronizing DARE sequence
 • Mesh Service protocol is very simple
 • Status/Upload/Download
For more information

• Web site
 • Mathmesh.com

• YouTube Channel
 • 7 hours of video
Meta Cryptography

Web 2.0 Rebranding for threshold cryptography etc.
Key Combination

Private Key
\[x \]

Private Key
\[y \]

Private Key
\[z = x+y \]

Public Key
\[X = x.P \]

Public Key
\[Y = y.P \]

Public Key
\[z = (x+y).P = X+Y \]
Key Splitting

Private Key: \(z \)

Public Key: \(S = s \cdot P \)

Private Key: \(x \)

Private Key: \(y = z - x \)

Key Agreement:

\[
Ax = x \cdot S = x \cdot s \cdot P
\]

\[
Ay = y \cdot S = y \cdot s \cdot P
\]

\[
A = Ax + Ay = x \cdot s \cdot P + y \cdot s \cdot P = z \cdot s \cdot P
\]

Key Agreement:

\[
A = z \cdot S = z \cdot s \cdot P
\]
Snowden-Proof Key Management

- Cloud service can control decryption
 - But cannot decrypt
 - The cloud only knows a random number
 - Can be generated without knowledge of private key
For more information

• Web site
 • Mathmesh.com

• YouTube Channel
 • 7 hours of video