
Multicast to the Browser

Jake Holland, Akamai

draft-jholland-mboned-dorms
draft-jholland-mboned-ambi
draft-jholland-mboned-cbacc

WICG: https://discourse.wicg.io/t/proposal-multicastreceiver-api/3939

https://discourse.wicg.io/t/proposal-multicastreceiver-api/3939

Goals

• Receive multicast in Javascript (W3C API)
• Port receivers to WebAssembly

• Including proprietary players & downloaders
• So web pages can play video, download files, etc. with multicast

• Safely
• Resist on-path packet injection/modification
• Malicious pages/scripts can’t blow out the network

Specs

WICG (W3C):
• MulticastReceiver API

IETF:
• DORMS: Discover and fetch extensible (S,G)-specific metadata
• AMBI: Authenticate packets with out-of-band manifests
• CBACC: Circuit-break streams if oversubscribed

Browser as Gatekeeper

var mr = new MulticastReceiver(
source=‘198.51.100.10’,
group=‘232.1.1.1’, port=5001,
dorms=‘dorms.example.com’);

mr.onmessage = function(evt) {
processPayloads(evt.data); }

mr.join()

Javascript
Browser

Fetch Metadata
(DORMS)

Safe Bitrate?
(CBACC)

dorms.example.com
(RESTCONF)

no
(error)

Subscribe

Internet

Authentication +
Loss Detection

(AMBI)
yes

Join(S,G)
data

integrity
stream

Authenticated payloads, loss stats

join()

Network as Gatekeeper

Javascript
Browser

DNS-SD query: SRV of
dorms._tcp.(reverse-src-ip)

=>dorms.example.com

On-path router

Fetch Metadata
(DORMS)

Safe Bitrate?
(CBACC)

no

(block)

RPF Propagate

(Optional for routers)
Authentication +
Loss Detection

(AMBI)

yes

Join(S,G)
data

Forward packets (optionally authenticated)

join()

Next Hop Router

Maybe
Downstream

Routers

DORMS -- Discovery Of RESTCONF Metadata for SSM

• RESTCONF: YANG-based HTTPS Restful API
• Authentication Hostname

• DNS Reverse IP -> DNS-SD provides hostname (for network)
• Known hostname provided by client (for browser API, pending wider DNSSEC/DoH)

• Bootstrap from hostname via standard RESTCONF (RFC 8040):
• /.well-known/host-meta
• /restconf/data/ietf-yang-library

• CORS
• Browser inserts origin header, server refuses unauthorized requests
• Network uses reverse IP as origin, optional client auth from server

• dorms.yang => Indexed fetch of (S,G)-specific metadata

DORMS
GET /top/restconf/data/

ietf-dorms:metadata/
sender=203.0.113.15/
group=232.1.1.1

Host: dorms-restconf.example.com
Accept: application/yang-data+json

HTTP/1.1 200 OK
Content-Type: application/yang-data+json
{
"ietf-dorms:group": [

{
"group-address":"232.1.1.1",
"udp-stream":[

{
"port":"5001”

}
]

}
]

}

DORMS + AMBI
GET /top/restconf/data/

ietf-dorms:metadata/
sender=203.0.113.15/
group=232.1.1.1

Host: dorms-restconf.example.com
Accept: application/yang-data+json

HTTP/1.1 200 OK
Content-Type: application/yang-data+json
{
"ietf-dorms:group": [

{
"group-address":"232.1.1.1",
"udp-stream":[

{
"port":"5001”,
"ietf-ambi:manifest-stream": [

"manifest-transport":[
"https://example.com/manifest1"

],
"hash-algorithm":"shake-128"

]
}

]
}

]
}

AMBI – Asymmetric Manifest-Based Integrity

• YANG augmentation of DORMS
• Adds yang data to the (S,G) nodes

• Out-of-band Stream of Manifests
• HTTPS Chunked Encoding (prototype at Hackathon)
• QUIC (H3 version of same)
• DTLS+FECFRAME (future work—reduce HOL blocking?)
• ALTA+FECFRAME (after DTLS–fate-sharing, better timing window, scalable)

• Manifests:
• List of sent packet digests (hash of contents)

AMBI (Asymmetric Manifest-Based Integrity)

Sender

Multicast Data
UDP Probably

Fanout & Forwarding
(Tunneling, PIM/BIER, IGMP/MLD)

Packet1

Packet2

Packet3

CDN/Elastic Cloud

Receivers
Packet without hash:

=> spoofed/corrupt
Hash without Packet:

=> loss

Packet1

Packet2

Packet3

Hash(Packet1)
Hash(Packet2)
Hash(Packet3)

1-3% of data:
Unicast-Authenticated Manifests

Manifests (Authenticated)
HTTPS/QUIC/DTLS

Hash(Packet1)
Hash(Packet2)
Hash(Packet3)

Also AMBI (phase 2, with ALTA)

Sender

Multicast Data
UDP Probably

Fanout & Forwarding
(Tunneling, PIM/BIER, IGMP/MLD)

Manifests (Signed)
UDP (another port
Signature
Hash(Packet1)
Hash(Packet2)
Hash(Packet3)

Packet1

Packet2

Packet3

CDN/Elastic Cloud

Receivers
Packet without hash:

=> spoofed/corrupt
Hash without Packet:

=> loss

Packet1

Packet2

Packet3

0% of data:
Unicast Authenticated
Public Keys (verify signatures)

Signature
Hash(Packet1)
Hash(Packet2)
Hash(Packet3)

Occasional Keys

CBACC – Circuit-Breaker Assisted Congestion Control

• YANG augmentation of DORMS
• Adds yang data to the (S,G) nodes

• Provides max-bitrate and priority metadata for (S,G)
• Defines circuit-breaker behavior

• Prune when oversubscribed
• Oversubscription threshold

• Static — typical for routers
• (default: X% interface capacity)

• Dynamic — typical for browser:
• Loss (shrink when there’s loss, grow when there’s not)
• History
• BW detection techniques (chirping/packet dispersion)

Circuit Breaker Assisted Congestion Control

Bit-rate metadata from senders
(via DORMS)

+ optional PIM population count for fair pruning decisions
(RFC 6807, experimental)

Notice oversubscribed
links, prune or block
flows.

draft-jholland-mboned-cbacc:

Implementation status

• Receive API (just basic join so far; to be extended)
• https://github.com/GrumpyOldTroll/libmcrx

• Hackathon AMBI implementation (POC; just the transport)
• https://github.com/GrumpyOldTroll/ambi

• Chromium with libmcrx & API (POC; do not use for browsing, not up to date)
• https://github.com/GrumpyOldTroll/chromium/tree/multicast

TBD:
- DORMS (with both CBACC and AMBI)
- CBACC
- AMBI ported to libmcrx
- Tunneling (AMT)

https://github.com/GrumpyOldTroll/libmcrx
https://github.com/GrumpyOldTroll/ambi
https://github.com/GrumpyOldTroll/chromium/tree/multicast

Next Steps

• Adoptions/dispatch?
• DORMS?
• CBACC?
• AMBI?

• WICG proposal
• Also needs support, please read and comment J

https://discourse.wicg.io/t/proposal-multicastreceiver-api/3939

https://discourse.wicg.io/t/proposal-multicastreceiver-api/3939

