
MLS Protocol

draft-ietf-mls-protocol-08
Richard Barnes, Raphael Robert,

Benjamin Beurdouche

Things to cover

● Changes since interim, especially:
○ Proposals
○ Unified Init / Welcome
○ Downgrade protection
○ External proposals

● Remaining issues, especially:
○ Handshake encryption
○ Signing key roll-over
○ Send-to-group-from-outside

● Discussion of performance metrics / simulation

Changes since Interim

Proposal / Commit

CommitCommit Commit

Proposal/Update

Proposal/Add

Proposal/Remove

Epoch

Proposals degrade the tree

Add Upd Upd

❌

❌

❌

❌

Commits rebuild the tree

Com Add Upd Upd

❌

✨

✨

✨

Unified Init / Welcome

With Proposals, multiple Adds per epoch

=> Make Welcome support multiple users
=> Init = Welcome*

Group Creation:

● Creator makes a one-member group
● ... sends itself N add proposals + commit
● ... sends resulting Welcome (= Init) to new

members

GroupInfo
(tree, transcripts, …)

KeyPackage0
(epoch secret,
path secret)

KeyPackageN
(epoch secret,
path secret)

External Proposals

Add and Remove can be generated by people not in the group

Signal this with special values in MLSPlaintext.sender

0xFFFFFFFF = Self-add, signed by key in CIK

0xFFFFFF00 - 0xFFFFFFFE = pre-configured

User-initiated add!

Server-initiated
remove!

Server-initiated add
… almost!

Downgrade Protection / CIK Expiration

ClientInitKeys now have a single version, ciphersuite

Problem: CIK server can downgrade by not providing CIKs for good values

Solution: Extensions! supported_versions and supported_ciphersuites

Group creator MUST verify it has CIKs for best options

While we’re at it … expiration = seconds since epoch

Changes since draft-08 (oops)

Further improvement to Welcome (#247)

Don’t require sender to generate keys

All recipient to verify correct processing

ProposalIDs are Busted (#246)

❌

ProposalIDs are Busted (#246)

struct {
 Proposal proposal<*>;
 Commit commit;
 opaque signature;
} MLSPlaintext;

struct {
 select {app/prop/comm}
 opaque signature;
} MLSPlaintext;

struct {
 select {app/prop/comm}
} MLSPtContent;

struct {
 MLSPtContent vals<*>;
 opaque signature;
} MLSPlaintext;

Current One Entry Generic Framing

Amortization of signature
vs.

Complexity / !(key separation) (?)

Unpredictable Epochs (#245)

Decentralized apps (e.g. Matrix) need to tolerate
forks in group history

Right now, epoch is a linear counter

Proposal: epoch pseudo-random, derived from
group state

Small enough to not bloat messages

Large enough to avoid collisions

Concerns about server being able to keep up

⚓
1affc58d

⛰
3103ce98

⛵
8cb4514d

⚓
30de0999

Yet to come...

MLS Exporter (#198)

Use MLS to generate group secrets needed for other applications: SRTP,
encrypted backup… (Same mechanism as TLS)

MLS Exporter (#198)

Use MLS to generate group secrets needed for other applications: SRTP,
encrypted backup… (Same mechanism as TLS)

Tree of Signatures (#253)

The newcomers need more than the credentials…

For now, a newcomer has to completely trust the sender of the welcome
package to provide an honest public tree.

Until the newcomer see everyone update, there are not much guarantees.

If each node of the tree is signed, the newcomer can figure out the influence
of the current members over the current public state of the group

Tree of Signatures (#253)

A B C D E F

B’ D’ F’

D’’

F’’

Option #1: Signatures on nodes

A B C D E F

B’ D’ F’

D’’

F’’

Option #2: Leaf signatures + Hashes

A B C D E F

B’ D’ F’

D’’

F’’

A A’ A’’ A’’’ B B’ B’’ B’’’ C C’ C’’ C’’’ D D’ D’’ D’’’ E E’ E’’ F F’ F’’

Tree signing optionns

Sig ops Tree size overhead

Option #1: Signatures on nodes log N N * sig

Option #2: Signatures on leaves 1 N log N * hash

Option #3: YOLO* 0 0

* don’t defend against malicious adders

PSK (#251)

Inject a PSK into the Key schedule: from an expensive PQ group key
exchange, static PSKs...

This case leaves the application to handle everything. This might be too easy
for the applications to screw up… so there is an alternative...

PSK (#251 alternative)

Inject a PSK into the Key schedule: from an expensive PQ group key
exchange, static PSKs...

Define a new Group Operation called PSK which contains a PSK identifier

and Extract with the PSK instead of an update to get the Epoch secret.

I prefer that, and this might actually be better...

-> Discuss and assign to Ben
RLB: cf.
draft-jhoyla-tls-extended-key-schedule

ClienT IniT Keys in Leaves (#254)

The newcomers need more than the credentials, they need the CIKs from
other members so that they can check their identity and the content of the
leaves.

- Gives you an HPKE public key blessed by the signature key
- Allows newcomer to look at other members extension, PV, CS…

Because the CIK contains a signature, it fits well the signature tree story.
Each time the Leaf KEM key is updated, the signature is updated.

This will allow Signature Key rotation.

OTHER STUFFF ! (For later...)

Putting the Client Init Keys in the Leaf will allow to do Signature Key rotation.

Splitting Identity Key and Signature Key will allow more privacy and a better
PCS story if we can rotate the signature keys. The compromise scenario of
the sig keys can be very different that the compromise of the long-term
identity key which might be stored in an HSM or crypto token or whatever...

More privacy stuff…

Measurement / Simulation

Webex Teams (anec)data in “transcript” form

… sequence of Add / Remove / Message

Enough verisimilitude?

Other providers?

What to measure?

● DH ops (fixed / variable)
● Signature ops
● Encryptions / MACs / digests?

What protocol things do we want to look at?

● Commit schedules
● Operational rules (e.g., update-on-join)
● Proposal / Commit / App data packing

Volunteers to run simulations /
collect data / analyze data?

