Framework for Use of ECA in Network Self-Management

draft-bwd-netmod-eca-framework-00

Daniel King
Mohamed Boucadair
Michale Wang
Qin Wu
Chongfeng Xie
IETF 106

NMRG IETF106 Singapore,
November 16~22
Why ECA?

• Event condition action (ECA) provides a structure for active rules in an event driven environment, traditionally consisting of three parts:
 – The Event part specifies the signal that triggers the invocation of the rule
 – The Condition is a logical test that, if satisfied, causes the action to be carried out
 – The Action part consists of updates or invocations on the local data

• IETF SUPA WG: datatracker.ietf.org/wg/supa was created in 2015 to provide approaches to express high-level, possibly network-wide policies to a network management function and classify policy into imperative and declarative policy model.
 – The WG concluded in 2017 as it failed to agree and derive a data model

• Recently (at IETF 105), two drafts both propose ECA-based solutions:
 – draft-bryskin-netconf-automation-framework-00
 – draft-wwx-netmod-event-yang
 – Authors were encouraged to merge discussions

• It's clear ECA will play an important role in event-driven networking
 – The above drafts have common complex use cases and propose models for event, condition and actions
The Motivation for this Work

• Given the suitability of ECA, it seems logical to develop a complimentary document to outline use cases, key issues and an architecture in parallel to the ECA-based solution work

• Framework for Use of ECA in Network Self-Management
 – draft-bwd-netmod-eca-framework-00
 – This would form the foundation and mechanism to sanity check the development of ECA-based data models for Network Self-Management
 – It investigates the problem space for network-self management
 – It identifies key issues and challenges that need to be addressed, including:
 • Limited Use Cases
 • Defining Event and Control Logic
 • State Management (see following slides)
 – Centralized and Distributed State Management
 – Delegation of Logic to Devices for Self-Management
 • Execution of Logic
 • Notification Handling (see following slides)
 • Conflicting Policy Resolution (see following slides)
 • Important Security Considerations
State Management

- State applies to
 - Managed object changes, this could be network level or device level
 - The time when Events are triggered
 - the occurrence of an Event
 \{event name; start time; end time; threshold value; occurrence times\}

- How much state is this?
 - How long event-based management is prepared?
 - How often event-based management is scheduled?
 - How many start time do we need to support?
 - Do we need to keep state each time when event is triggered?

- State management issues may be mitigated if we:
 - Limit the state that need to be stored
 - Reduce frequency of event-based management being scheduled
Where do we store State?

• It depends
 – Architecture dependent, and who will need to consume the State?

• We have a range of options
 – App could monitor instantaneous network states of managed objects and provide service assurance based on some threshold value
 – App can provide rapid autonomic responses and enable self-management based on historical data of data object
 – Centralized control of system behavior across the whole network based on variables
 • Accumulation/computation thereof over periods of time (e.g. min/max/mean leaf values, history data, threshold value)

• Therefore:
 – State management is needed where time-based policy management is done
 – State management is needed where self-management is done
 – State management is needed where network control logic is delegated
 – State management is needed where network level policy control is done

• The question of state management creates substantial changes, based on
 – What functions do we need to provide?
 – What protocol changes may be required?
Suitable Architectures for State Management?

• Do we need centralized or distributed state management?
 – Is it only dependent only on the service architecture?
 – What about speed, scale, and security of ECA functions?

• Centralized ECA management
 – Central control of network-wide policy behavior:
 – State is stored in controller or the management system, and controlled centrally
 – Requires a searchable repository of all network information
 • Provides diagnostics, service assurance, maintenance and audit capabilities
 – However, responding to network events may take “time”

• Distributed ECA management
 – Delegates policy behavior types to allow autonomic behavior
 – State options are defined in the controller or the management system, but behavior is delegated to the network device
 – Network-wide changes or decision making on App flow information is limited
Conflicting Policy Resolution

• Detecting and Resolving Policy Conflict
 – Conflict between device level ECA policies
 – Conflict between network level ECA policy and device level ECA policy
 – A need for policy conflict detection and policy validation mechanism

• Chain Reaction of Coordinated Events
 – Execute Events in a coordinated manner by the same network devices
 – Execute Events in a coordinated manner by the different network devices

• Do we need to model ECA scripts?
 – Generate script from model
 – Include script in the model
 – Allow global variable shared by multiple script

• What actions can we support?
 – Log
 – Reconfiguration
 – Invoke another event,

• Policy Variables and ECA targets
Securing ECA-based Operations

• Operational and Security considerations discussed in the document, include:
 – Authentication of ECA programming requests
 – Application of suitable authorization methods when enabling ECA functions
 – Securing ECA communication channels
 – Locking ECA device config and state databases
 – Mitigation, and negation, of ECA functional component attacks
 – Logging and auditing of ECA transactions
 – Maintaining ECA device confidentially
Why present in NMRG?

• Q1. Some of the ECA Framework topics highlighted may be out of scope for IETF activity, but they could be progressed within the NMRG

• Q2. Is there potential for documenting a relationship between the current NMRG IBN Framework discussions, and how this might map to an ECA Framework?

• Q3. Is there interest in developing a survey of device and network-wide Event-Condition-Action rule languages, including current art, usage, strengths/disadvantages, et al.