Framework for Use of ECA in Network Self-Management draft-bwd-netmod-eca-framework-00

Daniel King Mohamed Boucadair Michale Wang Qin Wu Chongfeng Xie IETF 106

NMRG IETF106 Singapore, November 16~22

Why ECA?

- Event condition action (ECA) provides a structure for active rules in an event driven environment, traditionally consisting of three parts:
 - The **Event** part specifies the signal that triggers the invocation of the rule
 - The **Condition** is a logical test that, if satisfied, causes the action to be carried out
 - The **Action** part consists of updates or invocations on the local data
- IETF SUPA WG: datatracker.ietf.org/wg/supa was created in 2015 to provide approaches to express high-level, possibly network-wide policies to a network management function and classify policy into imperative and declarative policy model.
 - The WG concluded in 2017 as it failed to agree and derive a data model
- Recently (at IETF 105), two drafts both propose ECA-based solutions:
 - draft-bryskin-netconf-automation-framework-00
 - draft-wwx-netmod-event-yang
 - Authors were encouraged to merge discussions
- Its clear ECA will play an important role in event-driven networking
 - The above drafts have common complex use cases and propose models for event, condition and actions

The Motivation for this Work

• Given the suitability of ECA, it seems logical to develop a complimentary document to outline use cases, key issues and an architecture in parallel to the ECA-based solution work

• Framework for Use of ECA in Network Self-Management

- draft-bwd-netmod-eca-framework-00
- This would form the foundation and mechanism to sanity check the development of ECAbased data models for Network Self-Management
- It investigates the problem space for network-self management
- It identifies key issues and challenges that need to be addressed, including:
 - Limited Use Cases
 - Defining Event and Control Logic
 - State Management (see following slides)
 - Centralized and Distributed State Management
 - Delegation of Logic to Devices for Self-Management
 - Execution of Logic
 - Notification Handling (see following slides)
 - Conflicting Policy Resolution (see following slides)
 - Important Security Considerations

State Management

- State applies to
 - Managed object changes, this could be network level or device level
 - The time when Events are triggered
 - the occurrence of an Event

{event name; start time; end time; threshold value; occurrence times}

- How much sate is this?
 - How long event-based management is prepared?
 - How often event-based management is scheduled?
 - How many start time do we need to support?
 - Do we need to keep state each time when event is triggered?
- State management issues may be mitigated if we:
 - Limit the state that need to be stored
 - Reduce frequency of event-based management being scheduled

Where do we store State?

- It depends
 - Architecture dependent, and who will need to consume the State?
- We have a range of options
 - App could monitor instantaneous network states of managed objects and provide service assurance based on some threshold value
 - App can provide rapid autonomic responses and enable self-management based on historical data of data object
 - Centralized control of system behavior across the whole network based on variables
 - Accumulation/computation thereof over periods of time (e.g. min/max/mean leaf values, history data, threshold value)
- Therefore:
 - State management is needed where time-based policy management is done
 - State management is needed where self-management is done
 - State management is needed where network control logic is delegated
 - State management is needed where network level policy control is done
- The question of state management creates substantial changes, based on
 - What functions do we need to provide?
 - What protocol changes may be required?

Suitable Architectures for State Management?

- Do we need centralized or distributed state management?
 - Is it only dependent only on the service architecture?
 - What about speed, scale, and security of ECA functions?
- Centralized ECA management
 - Central control of network-wide policy behavior:
 - State is stored in controller or the management system, and controlled centrally
 - Requires a searchable repository of all network information
 - Provides diagnostics, service assurance, maintenance and audit capabilities
 - However, responding to network events may take "time"
- Distributed ECA management
 - Delegates policy behavior types to allow autonomic behavior
 - State options are defined in the controller or the management system, but behavior is delegated to the network device
 - Network-wide changes or decision making on App flow information is limited

Conflicting Policy Resolution

- Detecting and Resolving Policy Conflict
 - Conflict between device level ECA policies
 - Conflict between network level ECA policy and device level ECA policy
 - A need for policy conflict detection and policy validation mechanism
- Chain Reaction of Coordinated Events
 - Execute Events in a coordinated manner by the same network devices
 - Execute Events in a coordinated manner by the different network devices
- Do we need to model ECA scripts?
 - Generate script from model
 - Include script in the model
 - Allow global variable shared by multiple script
- What actions can we support?
 - Log
 - Reconfiguration
 - Invoke another event,
- Policy Variables and ECA targets

Securing ECA-based Operations

- Operational and Security considerations discussed in the document, include:
 - Authentication of ECA programming requests
 - Application of suitable authorization methods when enabling ECA functions
 - Securing ECA communication channels
 - Locking ECA device config and state databases
 - Mitigation, and negation, of ECA functional component attacks
 - Logging and auditing of ECA transactions
 - Maintaining ECA device confidentially

Why present in NMRG?

- Q1. Some of the ECA Framework topics highlighted may be out of scope for IETF activity, but they could be progressed within the NMRG
- Q2. Is there potential for documenting a relationship between the current NMRG IBN Framework discussions, and how this might map to an ECA Framework?
- Q3. Is there interest in developing a survey of device and network-wide Event-Condition-Action rule languages, including current art, usage, strengths/disadvantages, et al.