RLC FEC Schemes for QUIC (update)

draft-roca-nwcrg-rlc-fec-scheme-for-quic-02

Vincent Roca, François Michel, Ian Swett, Marie-José Montpetit

IETF106, Singapore, November 21st, 2019

Main considerations

- inline with "Coding for QUIC" -03 I-D
 - "cross packet FRAMES" approach
 - being FRAME agnostic and compatible with DATAGRAM FRAMES is a must
- leverages on RFC 8681 (RLC) and RFC 8682 (TinyMT32) specifications
 - do not repeat code internals, focus on QUIC specific mapping and signaling
 - → keeps this I-D very compact
- potentially add similar I-Ds for other FEC codes and FEC schemes
 - different features, different use cases, for instance (to be tested):
 - o real-time, a few tens of packets → RLC on GF(28)
 - o higher BDP, a few thousands of packets → block code (Raptor(Q), LDPC)

QUIC packet to source symbols mapping

• to be used for FEC encoding/decoding, not transmitted per se

Source QUIC packets with their FPI

- add a SRC_FPI frame to the original QUIC packet, then send it
 - no other change to the original QUIC packet (no padding, no meta-data, we do not transmit source symbols per se)
 - the SRC_FPI frame is ignored by a QUIC receiver that does not support FEC

Repair QUIC packets

- transmit repair symbols in dedicated REPAIR frames
 - it includes repair FPI signaling information
 - one or more REPAIR frames can be packed in the same QUIC packet (e.g., if E is small WRT the PMTU), for reduced overhead
 - o a REPAIR frame is **ignored** by a QUIC receiver that does not support FEC

Situation

- François has a compliant open-source implementation
 - we know it can work as specified
- A few open questions:
 - o (from ietf105 discussion:) considering a subset of the QUIC packet frames
 - (from ietf105 discussion:) choice of E
 - move the "source symbols mapping" to this I-D
 - o it's FEC scheme dependent
 - QUIC frames are all idempotent:
 - o "a valid frame does not cause undesirable side effects or errors when received more than once."
 - ... except our SRC FPI frame that is attached to a given QUIC packet
 - not a major issue, it's just an exception

Thanks

• Additional slides, from ietf105 "Coding for QUIC" presentation. They still apply here...

QUIC packet to source symbols mapping (1)

- requirements:
 - 1. packets are of variable size, symbols are of fixed size (E), so we need a mapping
 - 2. the **symbol size**, **E**, needs to be initialized wisely:
 - "small E" is fine when the QUIC packet sizes is largely variable (very small + a few very large packets), but has a cost
 - "large E" makes it simple (everything fits in a single symbol) but is suboptimal with a majority of small packets, and it may require to fragment the QUIC/UDP at IP level
 - E could be adjusted depending on the target use-case (if known)
 - anticipate the potential need to avoid exceeding the PMTU (we add extra FEC related signaling)
 - choose E small enough

QUIC packet to source symbols mapping (2)

- Step 1: from QUIC packet payload to chunks
 - packet payload data is of variable size but source symbols are fixed size (E bytes)
 - use QUIC zero padding FRAMES before* the payload to align payload size

* to avoid problems with STREAM frames that do not encode their length

(2) segment padded payloads into E-1 byte long chunks (E-5 for the 1st one to leave room for additional info)

QUIC packet to source symbols mapping (3)

- Step 2: from a packet chunks to source symbols
 - 1st chunk: prepend a long signaling (5 bytes)

<meta-data + packet number + 1st chunk> constitute the source symbol

QUIC packet to source symbols mapping (4)

- Step 2: from a packet chunks to source symbols
 - 1st chunk: prepend a long signaling (5 bytes)
 - following chunks: prepend a short header (1 byte)

<meta-data + chunk> constitute the source symbol

QUIC packet to source symbols mapping (5)

- Step 2: from a packet chunks to source symbols
 - meta-data (all chunks):
 - N: packet Number is there
 - S (start): first chunk of a QUIC packet
 - E (end): last chunk of a QUIC packet

- Packet Number (4 bytes) (first chunk only, optional):
 - when "N" (Packet Number) field is 1 in the meta-data
 - required at a receiver to determine the QUIC packet number associated after decoding all the symbols of the lost packet

Yes, we need this extra meta-data / packet number

decoding successful for those 4 source symbols

S=1: we know the chunk contains one or more padding FRAMES plus original FRAMES

N=1: we can also recover the corresponding QUIC Packet Number

E=1: we know this chunk is the last one of packet

we have all chunks (S=1 | middle | middle | E=1) of the QUIC packet. Done ☺