Localized Optimizations over Path Segments

IETF 106, NWCRG meeting 2019-11-21
Packet loss
Packet loss
Packet loss
Tail loss!
LOOPS Opportunity

Segment measurement, control

Retransmission, Replication/FEC

Packet loss, reordering

FEC decoding, Recombination, Resequencing
Recover Packets Locally

Reduce end-to-end packet loss
Recover locally, where needed, with low latency
In the network

Host participation not required
Don’t look
Don’t touch
Works with any kind of IP packets
How to recover?

- **Retransmission**
 - Reverse information needed: ACK/NACK
 - Forward information: sequence numbering (if needed)
- **Forward Error Correction** (redundancy)
 - Can use dynamic selection of block size/rate: measurement input
 - “Retransmission” also possible by adding FEC

- Aim for low setup overhead
- Keep most setup out of protocol ("controller model")
How not to blow up the Internet

- Concealing losses removes important congestion signal
 - End-hosts would ramp up to higher rates, increase congestion

- Need **congestion feedback**
 - Preferred: ECN
 - Fallback: Selective dropping (selective recovery, actually)

- Host transport protocol improvements will help improve LOOPS performance, but are not prerequisite to obtaining benefit
LOOPS vs. transport protocols

- LOOPS is separate from the end-to-end transport protocol
 - Hands-off approach: don’t meddle
 - Do not assume the end-to-end protocol is out to help us, either
 - No direct control over sending rate (cc feedback only)
- LOOPS should not just be a classical transport protocol
 - Residual loss is OK
 - More choices: Tight interaction with the path segment being optimized
Where “transport protocol” intuition may not even work

- Relatively controlled/managed environment; setup mechanism assumed (can supply parameters so not everything needs to be high dynamic range)
- No full reliability intended; remaining gaps are OK (and at some point must leave the focus of attention)
 - Setup might set upper bound for overhead volume (e.g., 10 %), can well be “risky” in the way that this is used
- Tunnels usually have packets in flight (possibly a large number); tail processing rarely invoked (but may still be desired); don’t need overly conservative RTO
Documents out there

• Use cases and problem statement: “LOOPS (Localized Optimizations on Path Segments) Problem Statement and Opportunities for Network-Assisted Performance Enhancement”
 <draft-li-tsvwg-loops-problem-opportunities>
• Protocol: “LOOPS Generic Information Set” <draft-welzl-loops-gen-info>
• One of the Encapsulations: “Embedding LOOPS in Geneve”
 <draft-bormann-loops-geneve-binding-00.txt>
• Charter proposal for a LOOPS WG <https://github.com/loops-wg/charter>
• LOOPS mailing list loops@ietf.org
Related work (see IETF105 BOF)

- Encapsulations: Many (e.g., NVO3 for Geneve; GUE; GRE?)
- **FEC**: NWCRG for e.g., sliding window FEC, encapsulation techniques
- Tunnel congestion Feedback (TSVWG)
- Also: measurement work, IOAM; knowledge about behavior of transport protocols (TCP, QUIC) adaptation layer retransmission work (6Lo Fragment Recovery)
Sliding Window FEC

• Sliding windows fit quite well to LOOPS application (Can also use traditional block formats)

• Various drafts for FEC scheme and specific embeddings in NWCRG and TSVWG, e.g.,

 • "Sliding Window Random Linear Code (RLC) Forward Erasure Correction (FEC) Schemes for FECFRAME" <draft-ietf-tsvwg-rlc-fec-scheme-16.txt>

 • "Forward Error Correction (FEC) Framework Extension to Sliding Window Codes" <draft-ietf-tsvwg-fecframe-ext-08.txt>
LOOPS FEC approach

• Support multiple classes of FEC schemes, e.g.:
 • Very simple parity (as in SMPTE 2022)
 • Fountain Codes (e.g., RaptorQ)
 • Sliding Window schemes (e.g., RLC)
• Assume all codes are systematic (needed for transparent mode)
 • Except for transparent mode, augment payload packets by FEC indices
• Possibly add special handling for larger-than-tunnel-MTU packets
• Add repair packets with repair information
LOOPS FEC approach

- LOOPS can provide:
 - Forward: place for FEC indices, separate format for repair packets
 - Reverse: Block 2 acknowledgements, or aggregate loss rate feedback
- Assumption: large size variance of payload packets (avg 400..700 B)
 - Payload packets are divided up before being funneled into FEC
 - Not necessarily related to the way they are sent forward
 - Any piggybacking for repair segments? Recombining/splitting of payload packets (also for MTU reasons)?
From draft-roca-nwcrg-rlc-fec-scheme-for-quic-02:

Header 0 Packet Payload 4 packet chunks

m pn chnk m chunk m chunk m chunk 4 source symbols
FEC: Design choices

• Classes of FEC schemes (that can be handled equivalently by LOOPS)
 • What are the FEC indices to be added to payload packets?
 (Tunnel: right there; Transparent: separately)
 • Do we put in some MTU mitigation (breaking up payload packets)?
 Piggy-backing runts/short packets/repair symbols?

• Feedback:
 • For controlling FEC rate — what is the time scale?
 • For filling in repair packets?

• Details of the construction of FEC input and repair packets;
 how are reconstructed packets put together again?
LOOPS: Next Steps
While we are not a WG...

• Continue on, *working* like a WG
 • Explore design space, maybe holding back on tough decisions for now

• Continue improving the set of documents, possibly adding FEC document
 • Identify authors and reviewers

• Employ github.com/loops-wg and loops@ietf.org for coordination

• Review charter proposal at github; react to AD input on this

• Aim for being a WG at IETF 107 (Vancouver, March 2020)