
Rich Authorization Requests
https://tools.ietf.org/html/draft-lodderstedt-oauth-rar

IETF-106, 21.11.2019, Singapore
Brian Campbell, Justin Richer, Torsten Lodderstedt

A Payment API

Payment APIMerchant
payment

How does the Payment API know that the user authorized
the payment of that amount to this account?

buys
something

Pls. transfer 124,34€
to account DE02100100109307118603

Payment Authorization

Payment APIMerchant

Authorization Server

Pls. transfer 124,34€ to
DE02100100109307118603

payment

amount: 124,34€
to: DE02100100109307118603
reference: purchase 123456

amount: 124,34€
from: DE40100100103307118608
to: DE02100100109307118603
reference: purchase 123456

1

2

3

4

5

Use Cases with similar characteristics
● Access to Account Information
● Creation of Electronic Signatures
● Access to Health Data
● Access to Tax Data
● Strong Identity Attestation

Commonalities
● Privileges very narrowly defined (and must also be enforced)
● Authorization data fine grained & structured (voluminous)
● Sometimes transaction authorization (one time & transaction specific values)
● Integrity and authenticity of authorization request data needed
● Authorization data may contain PII - confidentiality might be important

Challenges
● Expressiveness of scopes is not sufficient for the scenarios just explained

○ No structure, no dynamic values - made for simple static access requests
○ Ambiguous (“openid email read”)

● Allocation of requested permissions to resource server specific access tokens
is hard (despite resource indicators)

Rich Authorization Requests

● draft-lodderstedt-oauth-rar specifies new
parameter "authorization_details"

● "authorization_details" contains, in JSON
notation, an array of objects

● Each JSON object contains the data to
specify the authorization requirements for a
certain type of resource.

● The type of resource or access requirement is
determined by the "type" field.

● Note: same structure is used in OAuth.xyz

 [
 {
 "type": "payment_initiation",
 "locations": [
 "https://example.com/payments"
],
 "actions": ["initiate", "status","cancel"],
 "instructedAmount": {
 "currency": "EUR",
 "amount": "123.50"
 },
 "creditorName": "Merchant123",
 "creditorAccount": {
 "iban": "DE02100100109307118603"
 },
 "remittanceInformationUnstructured":
 "purchase 123456"
 }
]

Combination
● Authorization requirements

for a multiple resources can
be combined

● “locations” field allows
assignment to particular
resource (server)

● “resource” parameter used
to select authorization
details for RS-specific
access tokens

 [
 {
 "type":"payment_initiation",
 "locations":["https://example.com/payments"],
 "actions":["initiate","status","cancel"],
 "instructedAmount":{
 "currency":"EUR",
 "amount":"123.50"
 },
 "creditorName":"Merchant123",
 "creditorAccount":{
 "iban":"DE02100100109307118603"
 },
 "remittanceInformationUnstructured":"purchase 123456"
 },
 {
 "type":"account_information",
 "locations":["https://example.com/accounts"],
 "actions":["list_accounts","read_balances","read_transactions"]
 }
]

authorization_details can be used ...
● where “scope” can be used
● in combination with or instead

of “scope”
● Example: pushed

authorization request

 POST /as/par HTTP/1.1
 Host: as.example.com
 Content-Type: application/x-www-form-urlencoded
 Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZ

 response_type=code
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U
 &authorization_details=%5B%7B%22type%22%3A%22account%5Fin
 formation%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%
 2C%22read%5Fbalances%22%2C%22read%5Ftransactions%22%5D%
 2C%22locations%22%3A%5B%22https%3A%2F%2Fexample%2Ecom%
 2Faccounts%22%5D%7D%5D

Advantages
● Flexible and type safe way to represent rich authorization data
● Allows definition of API-specific authorization data structures

- no “one size fits all”
● Common data set elements to address common use cases
● Interoperable and easy way to issue RS-specific Access Tokens and Token

Introspections Responses (Data Minimization and Disambiguation)

Status
● -03 revision (based on previous work at the FAPI WG)
● Positive feedback on the list, also from people new to our community

● implementations/prototypes exist (authlete, yes.com)

Would the WG consider to adopt this draft?

