Service Assurance for Intent-based Networking Architecture & YANG Modules for Service Assurance

draft-claise-opsawg-service-assurance-architecture-01
draft-claise-opsawg-service-assurance-yang-02

Benoit Claise and Jean Quilbeuf, Cisco
IETF 106, Singapore
Issues

• A service being configured doesn’t mean it’s operating correctly
• Too much data in telemetry: needle in a haystack
• When a service degrades, where is the fault?
 – what are the symptoms?
 – what is the root cause?
• When a network component fails, which services are impacted?
• How to solve closed loop automation, as a first step?
Proposal

• The end goal: self-healing/driving/whatever networks or intent-based networking
• Intent: the top down approach, declarative way is a nice concept
 – Mainly working for greenfield deployments
 – We have to solve this differently
• Service Assurance for Intent-based Networking Architecture proposal
 – Decompose the problem into smaller components
 – Those components are assured independently
 – Complement the end-to-end synthetic tests
Assurance Graph

Service Instance

Subservice Instances

- Tunnel
 - Service Instance
 - Tunnel
 - Service Instance
 - Peer1
 - Tunnel
 - Interface
 - Peer1
 - Physical
 - Interface
 - Peer1
 - Device
 - Peer2
 - Tunnel
 - Interface
 - Peer2
 - Physical
 - Interface
 - Peer2
 - Device
 - IP Connectivity
 - IS-IS Routing Protocol
Score & Symptoms

An inferred health score + a series of symptoms

- Tunnel
 - Service Instance
 - Peer1
 - Tunnel Interface
 - Peer1
 - Physical Interface
 - Peer1
 - Device
 - Peer2
 - Physical Interface
 - Peer2
 - Device
 - Peer2
 - Tunnel Interface
 - Peer2
 - Device
(Impacting or Informational) Dependencies

- Tunnel
 - Service Instance
 - Peer1
 - Tunnel Interface
 - Peer1
 - Physical Interface
 - Peer1
 - Device
 - Peer2
 - Tunnel Interface
 - Peer2
 - Physical Interface
 - Peer2
 - Device
 - IP Connectivity
 - IS-IS Routing Protocol
(Impacting or Informational) Dependencies

```
+---------------------+
| Tunnel              |
| Service Instance    |
+---------------------+

```

Informational Dependency

```
+-----+----------------------------+
| Peer1 | Tunnel | Interface                  |
+-----+----------------------------+
| Peer1 | Physical | Interface                |
+-----+----------------------------+
| Peer1 | Device           |
+-----+----------------------------+

```

```
+-----+----------------------------+
| Peer2 | Tunnel | Interface                  |
+-----+----------------------------+
| Peer2 | Physical | Interface                |
+-----+----------------------------+
| Peer2 | Device           |
+-----+----------------------------+

```

```
+-----+----------------------------+
| IP   | Connectivity               |
+-----+----------------------------+
| IS-IS | Routing | Protocol                 |
+-----+----------------------------+

```

ECMP
So far, we know...

• When a service degrades, where is the fault
 – what are the symptoms?
 – what is the root cause?

• When a network component fails, which services are impacted
Architecture

Service
 Configuration
 Orchestrate

Network
 Service
 Instance
 Configuration

SAIN
 Orchestrate

Configuration
 (assurance graph)

SAIN
 agent

^ ^ ^

Metric Collection

^ ^ ^

Feedback
 Loop

SAIN
 Collector

Health Status
 (Score + Symptoms)
 Streamed
 via Telemetry

Monitored Entities
Flexible Architecture

Could be a single box

Agent could be in or off routers
Open Architecture

• Why? multi-vendor
• How? With a YANG module
 – Can augment the YANG module
 – Even for vendor-specific subservices
Open Architecture with YANG Models
Open Architecture with YANG Models
module: ietf-service-assurance
 +--ro assurance-graph-version?yang:counter32
 +--ro assurance-graph-last-change?yang:date-and-time
 +--rw subservices
 +--rw subservice* [type id]
 +--rw type identityref
 +--rw id string
 +--ro last-change?yang:date-and-time
 +--ro label?string
 +--rw (parameter)?
 | +--:(service-instance-parameter)
 | +--rw service-instance-parameter
 | +--rw service?string
 | +--rw instance-name?string
 +--ro health-score?uint8
 +--rw symptoms
 | +--ro symptom* [start-date-time id]
 | +--ro id string
 | +--ro health-score-weight?uint8
 | +--ro label?string
 | +--ro start-date-timeyang:date-and-time
 | +--ro stop-date-time?yang:date-and-time
 +--rw dependencies
 +--rw dependency* [type id]
 +--rw type -> /subservices/subservice/type
 +--rw id -> /subservices/subservice[type=current()]/../type/id
 +--rw dependency-type?identityref
Assurance Tree API

module: ietf-service-assurance

+-rw subservices
 +--rw subservice* [type id]
 +--rw type identityref
 +--rw id string
 ...
 +--rw dependencies
 +--rw dependency* [type id]
 +--rw type -> /subservices/subservice/type
 +--rw id -> /subservices/subservice[type=current()/../type]/id
 +--rw dependency-type? identityref
Health Score and Symptoms API

module: ietf-service-assurance

 +--ro assurance-graph-version? yang:counter32
 +--ro assurance-graph-last-change? yang:date-and-time

 +--rw subservices

 +--rw subservice* [type id]

 +--ro health-score? uint8

 +--rw symptoms

 | +--ro symptom* [start-date-time id]

 | | +--ro id string

 | | +--ro health-score-weight? uint8

 | | +--ro label? string

 | | +--ro start-date-time yang:date-and-time

 | | +--ro stop-date-time? yang:date-and-time
Subservice Parameters API

module: ietf-service-assurance
 +--ro assurance-graph-version? yang:counter32
 +--ro assurance-graph-last-change? yang:date-and-time
 +--rw subservices
 +--rw subservice* [type id]
 +--rw type identityref
 +--rw id string
 +--ro last-change? yang:date-and-time
 +--ro label? string
 +--rw (parameter)?
 +--:(service-instance-parameter)
 | +--rw service-instance-parameter
 | +--rw service? string
 | +--rw instance-name? string
New Subservices

++rw (parameter)?
 | ++--:(service-instance-parameter)
 | | ++--rw service-instance-parameter
 | | | ++--rw service? string
 | | | ++--rw instance-name? string
 | ++--:(service-assurance-device:device-idty)
 | | ++--rw service-assurance-device:device:idty
 | | | ++--rw service-assurance-device:device? string
 | ++--:(example-service-assurance-device-acme:acme-device-idty)
 | | ++--rw example-service-assurance-device-acme:acme-device-idty
 | | | ++--rw example-service-assurance-device-acme:device? string
 | | | ++--rw example-service-assurance-device-acme:acme-specific-parameter? string

New subservice type

New vendor-specific subservice type
Feedback/Flame/Tomatoes

- Valid problem to solve industry-wide?
- At the IETF?
- Going in the right direction?