A Framework for Automating Service and Network Management with YANG

draft-ietf-model-automation-framework-00

Qin Wu (Huawei)
Mohamed Boucadair (Orange)
Christian Jacquenet (Orange)
Luis Miguel Contreras Murillo (Vodafone)
Diego R. Lopez (Telifonica)
Chongfeng Xie (China Telecom)
Weiqiang Cheng (China Mobile)
Liang Geng (China Mobile)
Young Lee (Futurewei)
Introduction

• Discuss YANG model architecture from a network provider perspective for service and network management automation
 – Guidance on how models at different level interconnect and glue together for service delivery and fulfillment

• Articulate common functionality and Concept to be used by multiple models and help operationalizing YANG-based model.

• Exemplify how YANG model put together for service delivery and service assurance
Current Status

• This YANG model framework draft was adopted in November 11.
 • draft-ietf-model-automation-framework-00
• Changes in latest version 00 WG draft
 • v00 – v06
 • v06 - v05
 • Move IETF defined YANG data model standard survey to Appendix.
 • Distinguish how the YANG models are discovered from how YANG models are integrated.
 • Generalize the architecture based on discussion in opsawg session
 • Polish Usage examples.
 • Address terminology consistency issues.
 • Other editorial changes.
Model Layering and representation

Orchestrator
 +---------------------+
 | Service Modeling |
 +---------------------+
 | Service Orchestration|
 +---------------------+

Hierarchy Abstraction

Service Model
(Customer Oriented)
Scope: "1:1" Pipe model
Bidirectional
++ BW:100M,OWD ++
 | ++------------------++|
 ++ ++
1. Ingress 2. Egress

Controller
 +---------------------+
 | Network Modeling |
 +---------------------+
 | network Orchestration|
 +---------------------+

Network Model
(Operator Oriented)
++ ++ ++ ++
 | | | | |
 | o--o--o--o--o--o--o--|
 ++ ++ ++ ++
source dst
L3VPN over TE
Instance Name/Access Interface
Proto Type/BW/RD,RT,.mapping
for hop

Device
 +---------------------+
 | Device Modeling |
 +---------------------+

Device Model

Interface add,BGP Peer,
Tunnel id,QoS/TE config

OPSAWG IETF 106 Singapore November 16 - 22, 2019
Model Automation Architecture Overview

- **Service lifecycle automation:**
 - Service Creation/Modification/Deletion
 - Service Maintenance
 - Service Assurance
 - Service Diagnosis

- **Closed loop Network management and Network Self Management**
 - Pub/Sub, e.g., YANG Push
 - ECA Policy Management
 - NBI Telemetry PM

- **Different level model translation**
 - Service to network level
 - Network level to device level
Interaction between YANG models

Example A. Interaction between Network Element model and Telemetry model

Example B. Cross layer interaction between service model and network model or between network model and device model

Example C. Interaction between Network Element model and ECA Policy Model

Example D. Interaction between Network Element models Via schema Mount

2019/11/17
Use case 1: L3VPN Service Delivery

Key Elements:
- Service Creation and Modification
- Service to Resource mapping
- Intent based service requirements and characteristics on connectivity service (bandwidth, latency, packet loss, jitter, etc.).

Key Value:
- Service Agility, facilitate service delivery, Rapid deploy of new service, reduce TTM
Use case 2: Real Time VPN Service Monitoring

Key Elements:
- Augment Network Topo model [RFC8345] with service topo info at network level, site role info at node level and performance measurement info at link level
- Establish the relationship between underlay topology and VPN service topology and bind the VPN service to the tunnel (e.g., SR-TE tunnel)

Key Value:
- Provide end to end Service Quality Assurance,
- Provide Network visibility and Easy troubleshooting

1. Measure per link network performance in the underlying network using MPLS loss and delay measurement method and report in aggregated way.
2. Monitor per tunnel network performance via pub/sub model or on demand RPC retrieval model.
3. Optimize network based on VPN service performance monitoring.
Use Case 3: Closed Loop Network Optimization

Event: management object state change
Condition: A+B > C
Action = Set Value
 = Alarm Notification
 = New Event

1. Populate ECA Model
2. YANG Push Notification Publication

Multi-domain Controller
Keep track of management object variable change based on ECA model
Automatic trigger of rules in response to events

Domain Controller
ECA Script

Key Elements:
• Common Network ECA Policy Model

Key Value:
• Provide full lifecycle closed loop Self Service Management
• Facilitate Network re-optimization and troubleshooting, service diagnosis
Way Forward

- Solicit further feedback on this Framework;
- Keep on polishing and Address issues raised in the meeting if there is any.