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Introduction

* On November 5-6 RIPE Labs organised a Pan-
European Quantum Internet Hackathon




Introduction

* Participants from multiple “nodes” (Delft, Paris,
Sarajevo, Padova, Geneva, Dublin) tackled
various quantum internet challenges

* One of them was to integrate a QKD protocol
Into the OpenSSL library



The OpenSSL challenge

* Challenge descripton:
https://github.com/PEQI19/PEQI-OpenSSL

* The end-goal of the challenge is to use an off-
the-shelf browser (e.g. Firefox) and connect it to
a secure HTTPS website hosted on an off-the-
shelf web server (e.g. Apache), while using a
QKD algorithm as the key agreement protocol.


https://github.com/PEQI19/PEQI-OpenSSL

The OpenSSL challenge

* Motivation for the challenge:

* Today quantum networking is either at the level of
hardware and low-level operations or abstract
protocols with complex mathematical proofs

* Bring quantum networks to a user-level application

* Open up the field to software engineers without a
guantum physics background

* Relate the hackathon to ongoing QKD work which is
already commercialised



ETSI QKD API
* Challenge was built around the ETSI QKD API:

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/01.01.01_60/gs_ QKD004v010101p.pdf

* The APl Is very simple and defines 5 functions:

Interface QKD AppInt{

QKD OPEN (in destination, in QoS, inout key handle , out status);
QKD CONNECT NONBLOCK (in key handle, out status);

QKD CONNECT BLOCKING (in key handle, in timeout, out status);

OKD _GET_KEY (in key handle, out key buffer, out status});

QKD CLOSE (in key handle, out status);

)


https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/01.01.01_60/gs_QKD004v010101p.pdf
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Elements of the challenge

* The API splits the challenge into two parts:
* Integrate the QKD API with OpenSSL

* Implement the QKD API on top of a quantum
network (simulated for now)

e Simulated network uses same low-level API
as the Dutch demonstration network (2021)




Integrating with OpenSSL
* Ateam in Delft attempted to integrate the QKD
APl into OpenSSL
* Bruno Rijsman, Yvo Keuter, Tim Janssen

* Avery thorough write-up with plenty of
iIntroductory material and running code:
https://brunorijsman.github.io/openssl-gkd/


https://brunorijsman.github.io/openssl-qkd/

Integrating with OpenSSL

* There are two ways of extending OpenSSL

e Hacking the existing engine-based extension
mechanism to extend existing protocols

* Introducing a new first-class key exchange
protocol state machine

* Team opted to implement engine by “abusing”
the Diffie-Hellman protocol
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Integrating with OpenSSL

 Difficulties and challenges:

* The engine behaves differently on the server
and client side, but this is not reflected in the
engine callbacks from OpenSSL

* The provided Mock API coupled with a
hacked DH engine led to deadlocks



Conclusions

* OpenSSL is challenging to extend

* The “easy” hacky way of abusing the DH
protocol engine had its own challenges

* Write up of the project (including running code):
https://brunorijsman.github.io/openssl-gkd/


https://brunorijsman.github.io/openssl-qkd/
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