Quantum Key Distribution in OpenSSL

QIRG Singapore 19 November 2019

Introduction

* On November 5-6 RIPE Labs organised a Pan-
European Quantum Internet Hackathon

Introduction

* Participants from multiple “nodes” (Delft, Paris,
Sarajevo, Padova, Geneva, Dublin) tackled
various quantum internet challenges

* One of them was to integrate a QKD protocol
Into the OpenSSL library

The OpenSSL challenge

* Challenge descripton:
https://github.com/PEQI19/PEQI-OpenSSL

* The end-goal of the challenge is to use an off-
the-shelf browser (e.g. Firefox) and connect it to
a secure HTTPS website hosted on an off-the-
shelf web server (e.g. Apache), while using a
QKD algorithm as the key agreement protocol.

https://github.com/PEQI19/PEQI-OpenSSL

The OpenSSL challenge

* Motivation for the challenge:

* Today quantum networking is either at the level of
hardware and low-level operations or abstract
protocols with complex mathematical proofs

* Bring quantum networks to a user-level application

* Open up the field to software engineers without a
guantum physics background

* Relate the hackathon to ongoing QKD work which is
already commercialised

ETSI QKD API
* Challenge was built around the ETSI QKD API:

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/01.01.01_60/gs_ QKD004v010101p.pdf

* The APl Is very simple and defines 5 functions:

Interface QKD AppInt{

QKD OPEN (in destination, in QoS, inout key handle , out status);
QKD CONNECT NONBLOCK (in key handle, out status);

QKD CONNECT BLOCKING (in key handle, in timeout, out status);

OKD _GET_KEY (in key handle, out key buffer, out status});

QKD CLOSE (in key handle, out status);

)

https://www.etsi.org/deliver/etsi_gs/QKD/001_099/004/01.01.01_60/gs_QKD004v010101p.pdf

TLS Client

-.\ |r.
. S

ETSI QKD AP

ETSI QKD API

ETSI QKD API

TLS Server

7 v
P - SR
A .
* ™ 1 - 1 i
ci - -
T v .
5 i i & b
T 0 a2 - 1 H
o - _U“ — . I
i1} = 1 o i 1
= = 2 = S0
AT -
o rd € ¥ =
Q = m_ T =N 1
o Q o B P
3= P
d m i “ m [l 1
i | _U i 1
¥ v _ | ¥ Lo
— AR N e b
g
o
c
a
=
Fal
2
aw..u....
Y N, S
.s ..d
| 1
....... —IIII|-|...|--|--. -] P S —
ry \ ok H ! & ! .
1 = ! 1 H.. 1 !
i = T o
=
=1 I Q| w1 B Lo
o o! = (el | 1 1
=z =1 m ! 1 = il !
= T W. 1 Im._ n.me_ !
z| 3 5 8 E| 3
=% <. L ﬁ_ “ o b“ 1
S| & | £ | &
1 1
gl i ol & & T
g) R - I
]]] “ [“ 1
1 e 1 ;= 1 1
] i 1 | (s} I]
........... SN ISR IR A N S
1 1

QKD _CLOSE(key_handle)

Elements of the challenge

* The API splits the challenge into two parts:
* Integrate the QKD API with OpenSSL

* Implement the QKD API on top of a quantum
network (simulated for now)

e Simulated network uses same low-level API
as the Dutch demonstration network (2021)

Integrating with OpenSSL
* Ateam in Delft attempted to integrate the QKD
APl into OpenSSL
* Bruno Rijsman, Yvo Keuter, Tim Janssen

* Avery thorough write-up with plenty of
iIntroductory material and running code:
https://brunorijsman.github.io/openssl-gkd/

https://brunorijsman.github.io/openssl-qkd/

Integrating with OpenSSL

* There are two ways of extending OpenSSL

e Hacking the existing engine-based extension
mechanism to extend existing protocols

* Introducing a new first-class key exchange
protocol state machine

* Team opted to implement engine by “abusing”
the Diffie-Hellman protocol

CpenS5L HTTPS web dient

Integrating with OpenSSL

Mock QKD implementation

L, HTTPS

OpenS5L library

QKD client engine

[Esmnamically leaded lbrary)

v

TLS

OpenS5L HTTPS web server

BBB84 QKD implementation running on SimulaQron

Diffie-Hellman (DH) client

calleacks

ETSI QKD AP

Mock QKD AFI

implementation

F
v

Mock QKD

OpenS5L library

QKD server engine
IEpnamacally londad |brary)

OpenS5L HTTPS web client

OpenSSL library

QKD client engine

Hyranicaly Deced by

, HTTPS
L, TS

Open55L HTTPS web server

Diffie-Hellman (DH) server
callbacks

ETSI QKD API

Diffie-Hallman {OH) client callbacks

Mock QKD AFI

implementation

ETSI QKD API

BEA4 QKD APl implementation

OpenS5L library

QKD server engine
[Esymn nmically lcaded | by

Diffie-Hellman (DH) server callbacks

ETSI QKD API

SimulaCron CQC AP|

F

h

_BBE4 QKD _

BBB4 QKD APl implementation

SimulaCiron COC AP

[3

¥

SimulaCron quantum network simulator

Integrating with OpenSSL

 Difficulties and challenges:

* The engine behaves differently on the server
and client side, but this is not reflected in the
engine callbacks from OpenSSL

* The provided Mock API coupled with a
hacked DH engine led to deadlocks

Conclusions

* OpenSSL is challenging to extend

* The “easy” hacky way of abusing the DH
protocol engine had its own challenges

* Write up of the project (including running code):
https://brunorijsman.github.io/openssl-gkd/

https://brunorijsman.github.io/openssl-qkd/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

