
EAT Proposals and Issues
IETF 106, Singapore, November 2019

Laurence Lundblade

When is EAT Done?
Should the following claims be added now or later?

Proposed: Attestation Result
• The output of the verifier can be an EAT

• (even when input is YANG and comes from a TPM)

• Implicit claims can be made explicit
• The verifier may know somethings about the device based on successful use

of the attestation key, debug is disabled
• A measurement input can be turned into a good / bad result

• A claim for certifications received by the device
• Valuable when verifier is a neutral party that can cross-check

Proposed: Public key claim
FIDO and Android KeyStore both do key attestation. IoT on boarding often
needs a key pair for use with DTLS.

A public key is included in an attestation so a relying party can know:

• The public key (and that the device has the private key)

• Key generation conditions (based on many already existing claims)

• Conditions governing key use (e.g., user authentication on device)

The work would be to standardize claims so standard EAT is closer to what
FIDO, Android and IoT need. Supporting everything used by these is most
likely too large and complex. New claims:

• Public key claim – reuse COSE and JOSE structures?

• Proof of possession of public key

• Some of the three-dozen characteristic Android uses

https://developer.android.com/training/articles/security-key-attestation

Proposed: Software Inventory Claim
For each software item on the device the following might be claimed:

• Name and / or file path

• Type – ROM, flashed execute in place, ELF, app…

• Version

• Vendor / Author

• Some measurement or authentication. Some or all of:
• Hash of the file or code
• Certificate that was used to verify it
• Hash of certificated used to verify it
• DN of certificate used to verify it

A likely structure is an array with one member for each SW item that is a
map containing some of the above claims similar to ARM’s PSA Token.

Proposed: Software Inventory Claim
Motivation:

• ARM PSA Token supports

• Cisco publishes a known-good-values list of its SW

• Seems of general interest

Challenges:

• Doing it in an OS-neutral way

Proposed: Measurement / Integrity Claim
Support several styles of measurement and integrity check:

• TPM-style: a series of hashes are taken at boot time and reported to
verifier

• Run time integrity: hashes taken during run time and reported to
verifier

• Integrity check result: run time hashes are evaluated in attester and
only true/false is reported to verifier (attester has to have known-
good-values).

Proposed: Measurement / Integrity Claim
Motivation:

• Widely in use in TPM-based architecture

• Samsung TIMA (as an example of a product)

• TPMs can’t support run time integrity check

Challenges:

• Finding platform / architecture neutrality

• Finding a small enough set of measurement schemes

• Finding common ground between TPM and non-TPM worlds

Pull Requests (PRs) and
Open Issues

PR updating oemid claim
PR has corrected references to IEEE

• Claim is an IEEE MA-L, MA-M, MA-S, a company prefix for a block of MAC
addresses of length 24, 28 or 36 bits

• Claim may also be an IEEE CID, not a MAC address, but from the same
space (doesn’t collide)

PR has new encoding

• Specially encoded as:
• Hexadecimal text in JSON for easy viewing and as is common with MAC addresses

• AC-DE-48-23 or AC:DE:48:23

• A byte string in CBOR for compactness

PR to add Nonce claim

• Previously the jti and cti claims were used for the nonce from the
relying party

• jti and cti are token identifiers from JWT and CWT and may be
generated locally.

• Now nonce claim is used
• Already defined in IANA JWT registry
• EAT defines nonce for CWT, as it is not in the IANA CWT registry

PR for debug states
• Previously array of four independent Booleans:
 boot_state_type = [
 secure_boot_enabled=> bool,
 debug_disabled=> bool,
 debug_disabled_since_boot=> bool,
 debug_permanent_disable=> bool,
 debug_full_permanent_disable=> bool
]
• Now similar, but an enumerated type with five states
 debug_disable_level = (
 not_disabled: 0,
 disabled: 1, May have been enabled earlier

 disabled_since_boot: 2,
 permanent_disable: 3, Only the manufacturer can enable

 full_permanent_disable: 4 Not even the manufacturer can enable

)

Discussion on debug states
 debug_disable_level = (
 not_disabled: 0,
 disabled: 1, May have been enabled earlier

 disabled_since_boot: 2,
 permanent_disable: 3, Only the manufacturer can enable

 full_permanent_disable: 4 Not even the manufacturer can enable

)

This applies to HW or broad system SW debug facilities, not to in-process debuggers
like gdb.

With the new non-inheritance submods, this is not inherited. Each subsystem must
indicate its debug state.

When a debug system has access to or effects multiple submods, each submod must
still report its stated individually.

PR – New submods structure
• Each submodule feeds claims to the attester

• The chip / system architecture allows the Attester to know
which claims come from which submodule

• Each submodule has
• A string name

• Claims…

• Indicator of attachment strength

• Claims are NOT inherited
• Each submodule has its boot and debug stated, OEM ID,

Version…

• Two types
• No signing key: feeds individual claims to attester

• With a singing key / subordinate attester: feeds a fully
serialized and signed EAT to attester

• (Possibly a third type that feeds a hash of serialized claims)

Mobile phone

TEE (main)

Attester

Wi-Fi (submodule)

GPS (submodule)

Android (submodule)

Audio / video
playback
(submodule)

Cell modem / phone
(nested)

Mobile phone example; submods all on internal bus

Android App

Attester

Unsigned claims over bus Signed token over bus

Signing key 2

Signing key 1

Description of changes in the PR
• Unifies signed and unsigned submodules; both now under submods

• The submods part of a token is a map with one submodule per entry

• submod_name replaced by putting the name in the submods map label / key

• The nested_eat claim is removed
• A signed submodule, a signed encoded token (formerly a nested_eat) is a map

entry in submods
• New submod_attachment claim is added

• Described how the submodule is attached to the attester
• Enumerated: unspecified, device internal, PCB internal, chip internal

Abbreviated Submods Example
{
 / nonce / 7:h'948f8860d13a463e8e',
 / UEID / 8:h'0198f50a4ff6c05861c8860d13a638ea4fe2f',
 / time stamp (iat) / 6:1526542894,
 / seclevel / 11:3, / secure restricted OS /

 / submods / 17:
 {
 / 1st submod, an Android Application / “App Foo”: {
 / nonce / 7:h'948f8860d13a463e8e',
 / seclevel / 11:1, / unrestricted /
 / submod_attachment / 24: 4 / chip internal /
 / app data / -70000:'text string'
 },
 / 2nd submod, A nested EAT from a cell modem / “Cell Modem”: {
 / eat / 16:61(18(
 / an embedded EAT / [/...COSE_Sign1 bytes with payload.../]
))
 }
 / 3rd submod, information about Linux Android / “Linux Android”: {
 / nonce / 7:h'948f8860d13a463e8e',
 / seclevel / 11:1, / unrestricted /
 / submod_attachment / 24: 4 / chip internal /
 / custom - release / -80000:'8.0.0',
 / custom - version / -80001:'4.9.51+'
 }
 }
}

Security Considerations

<add Giri’s text here>

UEID Size Discussion

Options:

1. Permanent limit at 128 bits

2. Require 128 bits now, allow for 256 bits

3. Require 256 bits now

People Devices/person Resulting database size Scenario likelihood Discussion

10 billion 100 trillion Highly realistic and fully expected 128 bits is enough

10 billion 100,000 quadrillion Edge of what we might expect 128 bits may be marginal

100 billion 1,000,000 100 quadrillion Speculative – devices per mammal,
nanobots…

Need a least 192 bits

UEID sizing is not the same as for IP addresses

• UEIDs must never be reassigned or reused over time or space

• Devices NOT IP connected; are bus connected, Bluetooth connected, serial port connected…

• There are likely to be very large databases of devices in IoT backend services, but not IP addresses

Should randomly generated UEID be 128 bits or 256 bits?

Database size 128 bits 192 bits 256 bits

trillion 2 * 10^-15 8 * 10^-35 5 * 10^-55

quadrillion 2 * 10^-09 8 * 10^-29 5 * 10^-49

100 quadrillion 2 * 10^-05 8 * 10^-25 5 * 10^-45

People Devices/person subsystems / device Database portion of population Resulting database size

10 billion 100 10 .1 trillion

10 billion 100,000 10 .1 quadrillion

100 billion 1,000,000 10 .1 100 quadrillion

Database size 128 bits 192 bits 256 bits

trillion 60,000 years 1024 years 1044 years

quadrillion 8 seconds 1014 years 1034 years

100 quadrillion 8 microseconds 1011 years 1031 years

Database Size

Probability of collision in one instance of database calculated by birthday attack

Time to collision assuming 10% of database changes per year

Claims Characteristics PR, slide 1
General advice on claim design

• Interoperability and Relying Party Orientation
• Design claims so relying parties can understand what they mean

• OS and Technology Neutral
• Not specific to operating system, hardware, programing language, manufacturer, sub

industry
• E.g., don’t orient to TEE, TPM, Unix, mobile phones, Javascript…

• Security Level Neutral
• Claims that are good for high security environments (TPMs, secure elements) and

low security environments (user mode apps).

• Reuse of Extant Data Formats
• Don’t reinvent when existing structures can be re used; re use expertise
• Various approaches to encoding (translate to CDDL, take as is…)

Claims Characteristics PR, slide 2
General advice on claim design

• Proprietary Claims
• Considering the forgoing, proprietary claims are explicitly allowed

• Profiles
• Separate documents that may

• Make some claims mandatory

• Prohibit others

• Define new claims

• Narrow meaning of existing claims

Other claims that are in process or
proposed
• Origination

• Profile

• Boot Seed

	Slide 1
	Slide 2
	Proposed: Attestation Result
	Proposed: Public key claim
	Proposed: Software Inventory Claim
	Proposed: Software Inventory Claim
	Proposed: Measurement / Integrity Claim
	Proposed: Measurement / Integrity Claim
	Slide 9
	PR updating oemid claim
	PR to add Nonce claim
	PR for debug states
	Discussion on debug states
	PR – New submods structure
	Description of changes in the PR
	Abbreviated Submods Example
	Security Considerations
	UEID Size Discussion
	Should randomly generated UEID be 128 bits or 256 bits?
	Slide 20
	Slide 21
	Other claims that are in process or proposed

