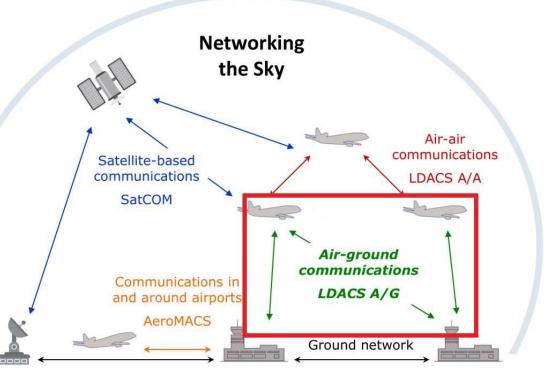
L-band Digital Aeronautical Communications System (LDACS)


draft-maeurer-raw-ldacs-00

Nils Mäurer, Thomas Gräupl, Corinna Schmitt

Developments in Aeronautical Communications

- (1) Civil air traffic growing +
 (2) New entrants such as UAVs
- Air traffic expected to **double** by 2040 compared to 2018
- Most aircraft still using analogue voice communications today
- Legacy systems in ATM will reach capacity limit
- VHF band is becoming saturated in high density areas of Europe, US and Asia

→ We need a new broadband digital aeronautical communications systems!

https://tools.ietf.org/pdf/draft-maeurer-raw-ldacs-00.pdf

RAW Internet-Draft Intended status: Informational Expires: 8 May 2020 N. Maeurer, Ed. T. Graeupl, Ed. German Aerospace Center (DLR) C. Schmitt, Ed. Research Institute CODE, UniBwM 5 November 2019

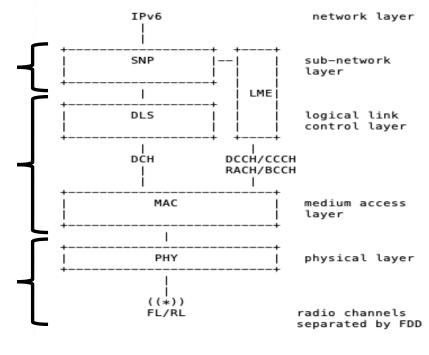
L-band Digital Aeronautical Communications System (LDACS) draft-maeurer-raw-ldacs-00

Abstract

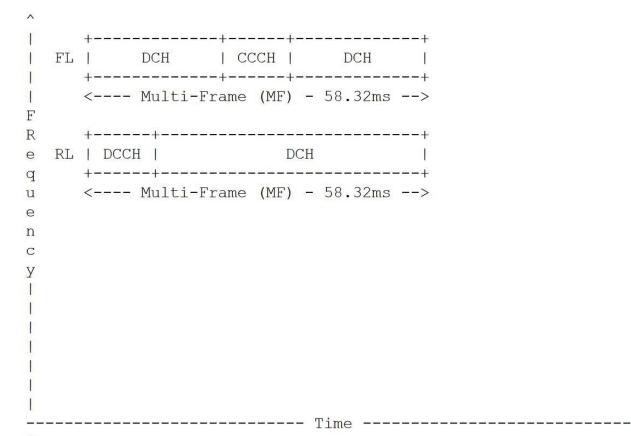
This document provides an overview of the architecture of the L-band Digital Aeronautical Communications System (LDACS), which provides a secure, scalable and spectrum efficient terrestrial data link for civil aviation. LDACS is a scheduled, reliable multi-application cellular broadband system with support for IPv6.

https://tools.ietf.org/pdf/ draft-maeurer-raw-ldacs-00.pdf

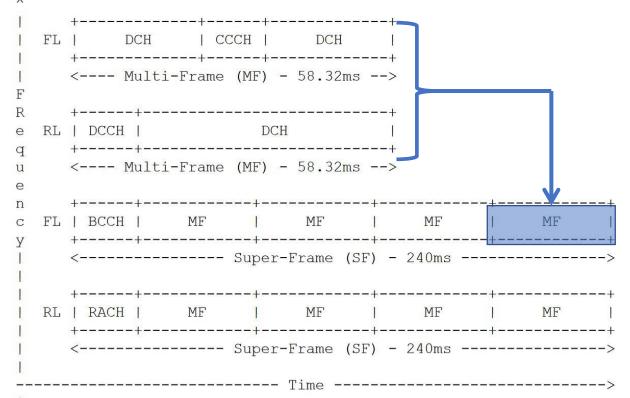
1. 1	Introduc	ction .				a	0.03		•								•						3
2. 1	[ermino]	Logy		10 • 2 2				•	•	•	•			2.5									3
2.1	1. Terr	ns used	in thi	s de	ocu	ımeı	nt		•	•				2.5								•	3
		ion and																					4
3.1		ce Commu																					5
3.2		a Commun																					5
4. H		nce and																					6
		eristics																					7
5.1		CS Physi																					7
5.2	2. LDAG	CS Data	Link L	ave:	r.	a anas a ang								1	92 64 11	10			1				8
		CS Data																					8
5.4	4. Rel	lability	z and A	vai	lab		ity	,			22 2423	57 52		12	20 64	5		0	2	1	8	8	8
, i	5.4.1.	LDACS M	ledium	Acce	299			124.07	1922	88. 1923)	85 1923	87 22	12 - 12	12	28 II 69	53 83		10	23 54	100	8	8	8
E.	5.4.2.	LDACS F	lesourc	e A	110	cat	tic	n	100	85.0 82.0	85 8190	87 10	85 94	10		6	0	10	55 12	10	-	8	9
		LDACS H																					9
		cture .																					10
		cocol St																					10
		Medium																					12
		Data Li										-											13
		Voice I																					13
		Link Ma			66	100																	13
		Sub-Net	A 12 C				3 3																13
		CS Logic																					14
		SC Frami																					15
		Forward																					15
		Reverse																					15
																							16
		y Consid																					17
		Conside																					
		nsiderat																					
		edgement																					
		ve Refer																					
		ive Ref																					17
Autho	ors' Add	dresses		8.00 8	• •	8 195	0.0	2.0.13	29.03	•		3.		0.			•	•	٠				19


Table of Contents

Benefits of LDACS


- High data rate (< 2 Mbit) 4G-like data link designed for longrange communication (<400 km) in regulated aeronautical spectrum (~ 1 GHz)
- Designed with safety-of-life use cases (i.e. air traffic management) in mind: reliability, predictability, and suitable for regulated spectrum (as required by the use case)
- Designed with IPv6 as network layer in mind; aeronautical networks shall transition from ACARS and OSI to IP network protocols
- Open standard at ICAO under development

LDACS protocol stack


Sub network link layer: LDACS sub-net management (LME); user plane cryptography (SNP) Data link layer: resource request/reservation through centralized scheduling (MAC); priority aware; reliable through automatic retransmissions (DLS). **Physical layer:** OFDMA on two FDD radio channels; 500 kHz each; hardened against aeronautical interference.

LDACS frame structure: Multi-frame

LDACS frame structure: Multi-frame & Super-frame (=4 MFs)

