# Communication Network Perspective on Malware Lifecycle (draft-fabini-smart-malware-lifecycle-00)

Joachim Fabini TU Wien





TECHNISCHE UNIVERSITÄT WIEN Vienna Austria

### Outline

- Institute and Research Group
- Background and Motivation
   Systems and Protocols
- Research Questions
- A Generic Malware Lifecycle Model
- Future work
- Summary and Outlook



## **TU Wien, Institute of Telecommunications**

- Institute: about 80 staff members
   Four full professors, six groups
- Research area: communications



- 5G, vehicular, antennas, IP-layer, security.
- Communication Networks (CN) group
  - Research focus: anomaly detection
  - Data analysis, (real-time) algorithms, measurement methodologies, hardware, ...
  - Data methods
    - Measurement methodologies, flow export, feature selection, clustering, anomaly detection (machine learning),...



- The illusion of "secure systems"
  - Vulnerabilities **do** exist in any system.
     Discovering them is a matter of skills and time
- System complexity: not reliably manageable
  - Hardware, firmware, software
  - Modular structure, reuse, interfaces
- System monocultures
  - Cost pressure, many incentives
  - (Tens of) thousands of identical devices
    - IoT, smartphones, PC (BIOS, OS, CPU, ...)



### **IETF Perspective on System Security**

- IETF security area's activity focus:
  - RFC 3552: "Protecting against an attack when one of the end-systems has been compromised is extraordinarily difficult"

- Rely on the "chain of trust"

- But systems are vulnerable
  - Malware exploits these vulnerabilities
  - Solutions needed for critical infrastructures
  - Low-cost, physical access for adversaries
    - EV charging 350kW (equals 500+ households)



#### **Background: Protocols**

#### • Security protocols deployed at large scale

- Defense against pervasive monitoring
- Use cases (and references): RFC 8404
   "Effects of Pervasive Encryption on Operators"
- Random numbers (signatures, encryption)

## Security paradoxon

- Security protocols build an ecosystem that supports hidden communications
  - Covert (subliminal) channels
  - Example: signatures in blockchains [3]

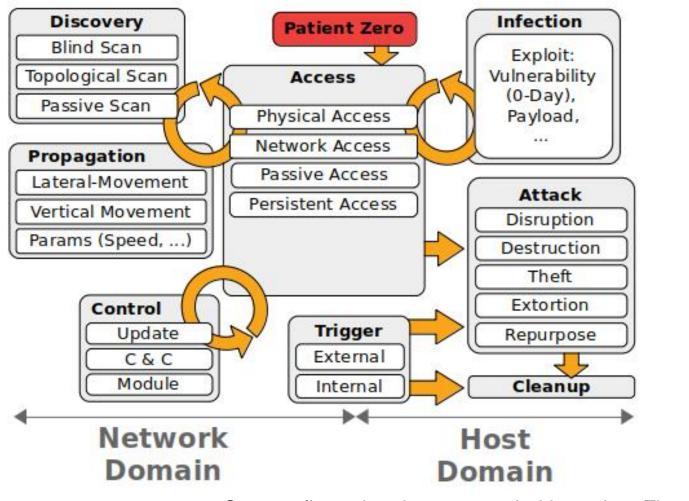


- Malware has strong incentives to communicate
  - Modular and distributed malware structure
  - Various communication types: infect, propagate, update, coordinate, attack, ...
  - The more communications, the higher the malware threat for the overall (large) system
- Challenges in detecting communication
  - Malware attempts to hide communications
  - Chronology comm. -> activity is uncertain



### **Proposal: Improve Defense Against Malware**

- Focus on malware communications


   Complement existing security measures
- Proactive measure(s): Inhibit malware communication by design
  - Rate protocols, interfaces and architectures
    - Define metrics quantifying the ability of protocols to inhibit hidden communications
- Reactive measure(s): Detect hidden communications
  - Detect communication anomalies to detect infected subsystems in order to isolate them



- Research question
  - Can we capture malware behavior and communication needs through a model?
- Method
  - Analyze existing malware
  - Identify patterns in communications and state transitions of malware
  - Design a generic malware lifecycle model



#### A Generic Malware Lifecycle Model



Source: figure has been extended based on Fig. 1 of [2]



- (How) Can malware misuse existing security protocols (subliminal channels)?
  - Prerequisites and countermeasures
  - Channel capacities, needs vs. offers
  - Traits that inhibit or support hidden communications
  - Develop metrics to quantify threat
  - Guidelines for robust protocol design



#### **Summary and Outlook**

• Generic malware lifecycle model enlarges the scope of current IETF security work

# - Home: IRTF or IETF? Specific WGs?

- Funded research project will start Jan. 2020
  - Seven partners (one AV/security, two utilities, one ministry, three research institutions); focus on utilities and e-vehicle charging infrastructure (including legals).
  - Results of relevance to IRTF/IETF work
    - Early feedback may reveal additional aspects



### Bibliography

#### • Bibliography

[1]: Draft: <u>https://datatracker.ietf.org/doc/draft-fabini-smart-</u> malware-lifecycle/

[2]: Eder-Neuhauser, P., Zseby, T., Fabini, J., and G. Vormayr, "Cyber Attack Models for Smart Grid Environments" Elsevier Sustainable Energy, Grids and Networks Volume 12, 2017, pp 10-29.

Pre-published version available for download at <a href="https://publik.tuwien.ac.at/files/publik\_261089.pdf">https://publik.tuwien.ac.at/files/publik\_261089.pdf</a>

[3]: D. Frkat, R. Annessi, T. Zseby: "ChainChannels: Private Botnet Communication Over Public Blockchains"; 2018 IEEE International Conference on Blockchain, ISBN: 978-1-5386-7975-3; pp 1244-1252.



# Thank You!

# Feedback and opinions welcome!

## Email contact: Joachim.Fabini@tuwien.ac.at



