SRv6 for Deterministic Networking

draft-geng-spring-srv6-for-detnet-00 draft-geng-dp-sol-srv6-01

Xuesong Geng (gengxuesong@huawei.com)

Mach Chen (mach.chen@huawei.com)

Yongqing Zhu (zhuyq@gsta.com)

Why Deterministic Networking?

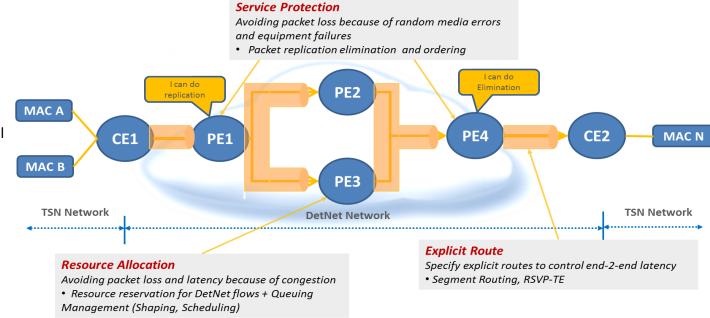
Use case category	Use Cases	User Experienced Data Rate	E2E Latency	Speed	Reliability
еМВВ	UHD, VR, AR	DL: 1 Gbps, UL: 500 Mbps	10 ms	Pedestrian	High
	High speed train	DL: 50 Mbps, UL: 25 Mbps	10 ms	Up to 500 km/h	High
	3D Connectivity: Aircrafts	DL: 15 Mbps, UL: 7.5 Mbps	10 <u>ms</u>	Up to 1000 km/h	Extremely High
	Ultra-low cost networks	DL: 10 Mbps, UL: 10 Mbps	50 ms	0-50 km/h	Low
	50 Mbps everywhere	DL: 50 Mbps, UL: 25 Mbps	10 ms	0-120 km/h	Medium
	Tactile internet	DL: 50 Mbps, UL: 25 Mbps	<1 ms	Pedestrian	Medium
Mission Critical <u>IoT</u>	Automatic traffic control/driving Collaborative robots Remote object manipulation –Remote surgery	DL: 50 kbps~10 bps; UL: a few bps~10 Mbps	1 <u>ms</u>	0-500 km/h	Extremely High
	eHealth: Extreme Life Critical Public safety	DL: 10 Mbps, UL: 10 Mbps	10 ms	0-500 km/h	Extremely High
	3D Connectivity: Drones				****
Massive LoT	Smart wearables (clothes) Sensor networks	Low (typically 1-100 kbps)	Seconds to hours	0-500 km/h	Medium
	Mobile video surveillance	DL: 300 Mbps, UL: 50 Mbps	10 <u>ms</u>	0-120 km/h	Medium
	News and information	DL: Up to 200 Mbps UL: Modest (e.g. 500 kbps)	<100 ms	0-500 km/h	Medium
	Local, Regional, National				
	Natural disaster	DL: 0.1-1 Mbps, UL: 0.1-1 Mbps	not critical	0-120 km/h	High

- New Applications in 5G
 - AR, VR
 - Industry
 - IoT
- New Requirement for Network
 - Strict SLA Guarantee: E2E Latency, Reliability...
- New Technologies?
 - Deterministic Networking(DetNet)
 - DetNet provides a capability to carry specified data flows for real-time applications with extremely low data loss rates and bounded latency within a network domain

DetNet Overview

Key Technologies

Resource Allocation:


- · e.g., buffer space or link bandwidth, for DetNet flow
- Resource allocation addresses two of the DetNet QoS requirements: latency and no congestion loss packet loss.

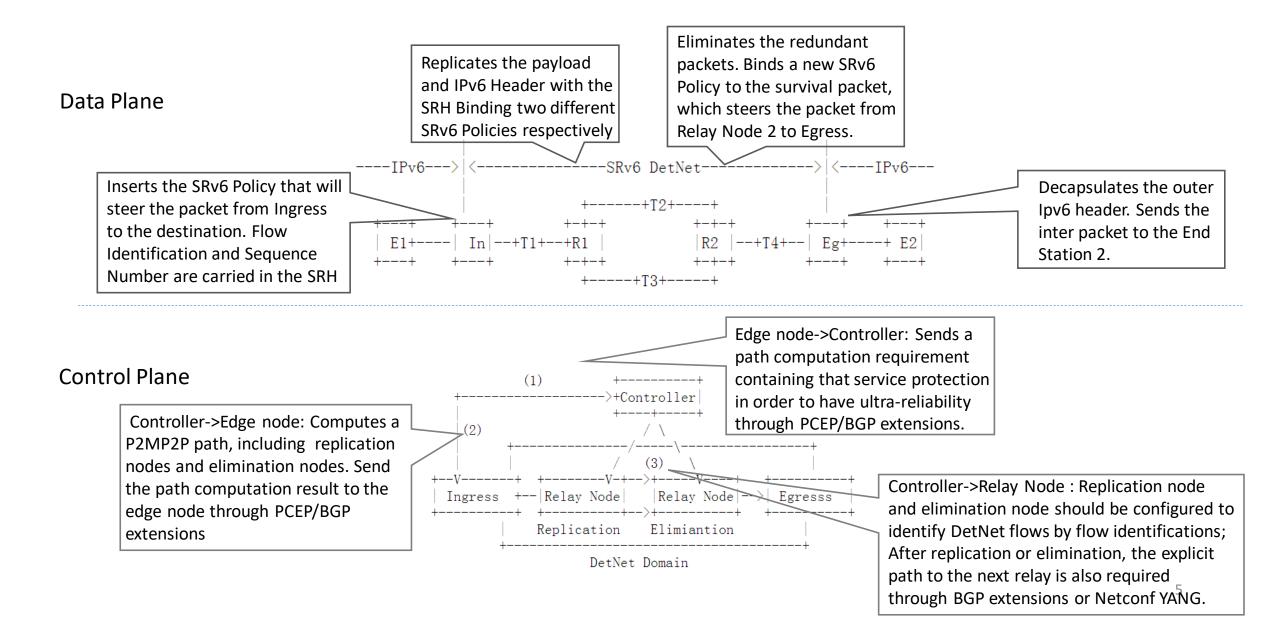
Service Protection:

- DetNet flow is replicated and transmitted through non-parallel paths at the same time
- Redundant DetNet flows are eliminated in a merge node.
- No packet loss when one of the path fails compared to traditional switchover from active path to standby path

Explicit Route:

 The paths are typically explicit routes so that they do not normally suffer temporary interruptions caused by the convergence of routing

Implement DetNet in an SRv6 Domain


Why SRv6?

- Source Routing: SRv6 could steer the DetNet flows through the network according to an explicit path with allocated resources;
- Network Programming: SRv6 applies instructions (functions) to packets in some special nodes (or even all the nodes)
 along the path in order to guarantee, e.g., service protection and congestion protection.
- Meta Data: SRH TLVs support meta-data for segment processing, which could be used to carry DetNet meta data, e.g., flow identification and sequence number.
- Why not?!

*RFC 8402: Segment Routing Architecture

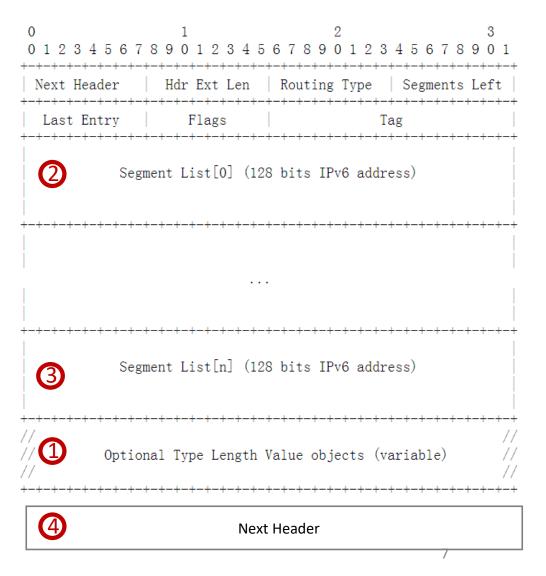
*draft-ietf-6man-segment-routing-header-26: IPv6 Segment Routing Header (SRH)

SRv6 for DetNet Service Protection

DetNet SRv6 Data Plane Requirement

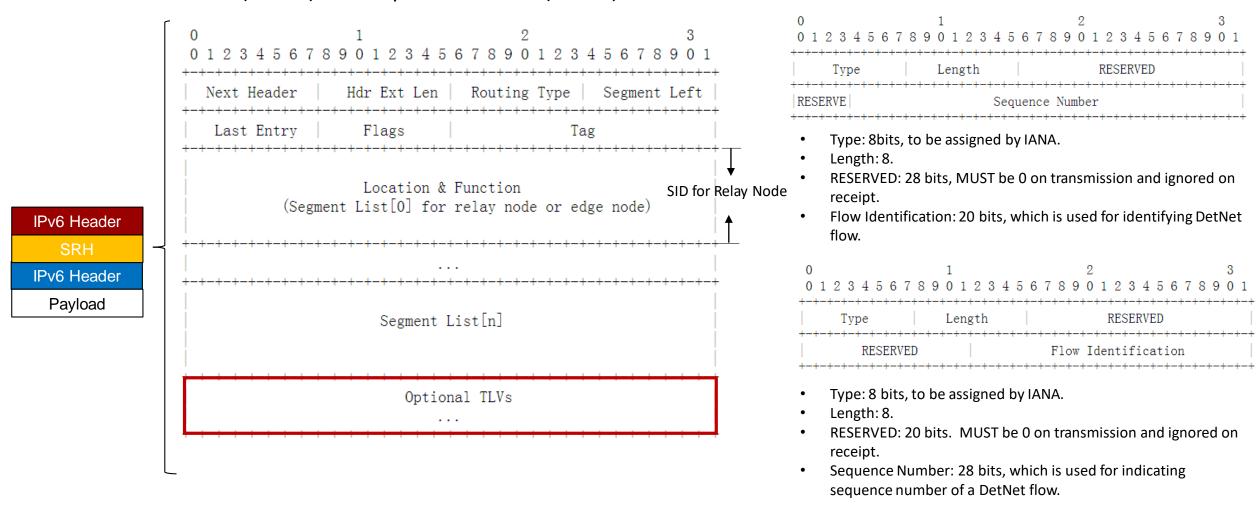
- A method of identifying the DetNet payload type;
- A suitable explicit route to deliver the DetNet flow; (e.g., Segment List in SRH)
- A method of indicating packet processing, such as PREOF; (detailed in next slides)
- A method of identifying the DetNet flow; (detailed in next slides)
- A method of carrying DetNet sequence number; (detailed in next slides)
- A method of carrying queuing and forwarding indication to do congestion protection; (not now)

DetNet SRv6 Data Plane Solution


Flow Identification(20bits) and Sequence Number(28bits) are carried in:

• Option1: SRH TLVs

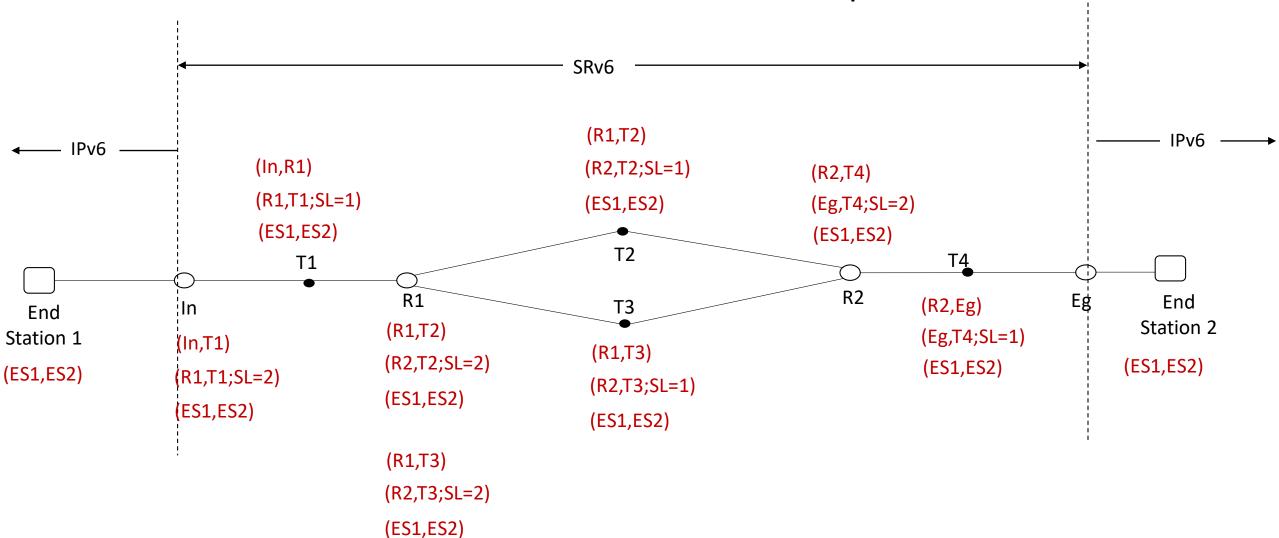
• Opiton2 : arguments in the SID for Relay Node


• Option3: DetNet SID in segment list

• Option4: DetNet SRH inside the SRH (Not Reasonable)

SRv6 Data Plane Solution Option1-Encapsulation

Flow Identification(32bits) and Sequence Number(32bits) are carried as TLVs

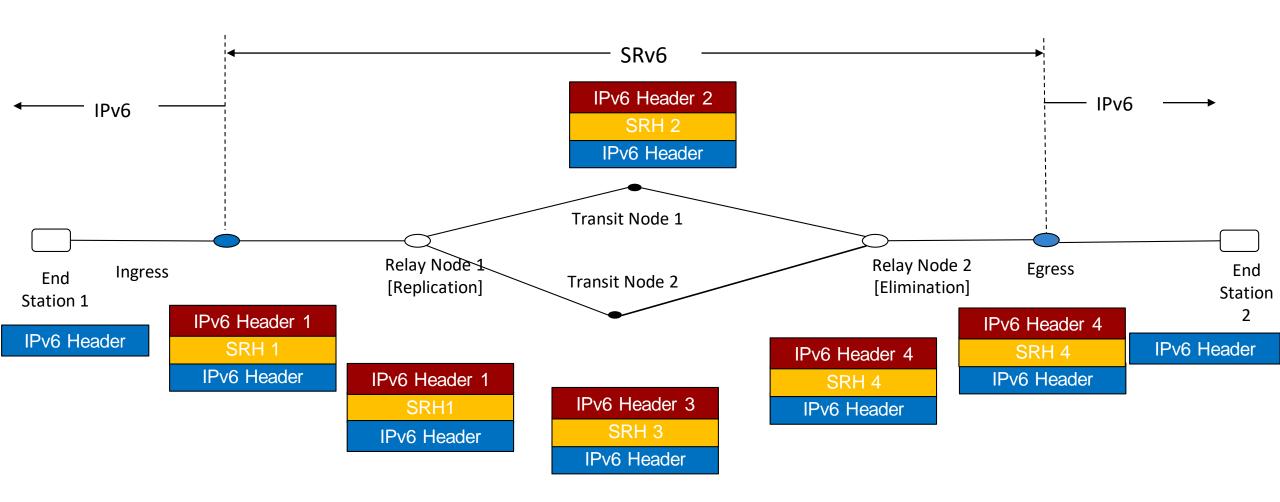

SRv6 Data Plane Solution Option1-Replication Function

- End. B. Replication: Packet Replication Function
 - IF NH=SRH & SL>0 THEN
 - extract the DetNet TLV values from the SRH
 - 3. create two new outer IPv6+SRH headers: IPv6-SRH-1 and IPv6-SRH-2; Insert the policy-instructed segment lists in each newly create SRH (SRH-1 and SRH-2). Also, add the extracted DetNet TLVs into SRH-1 and SRH-2.
 - 4. remove the incoming outer IPv6+SRH header.
 - 5. create a duplication of the incoming packet.
 - 6. encapsulate the original packet into the first outer IPv6+SRH header: (IPv6-SRH-1) (original packet)
 - 7. encapsulate the duplicate packet into the second outer IPv6+SRH header: (IPv6-SRH-2) (duplicate packet)
 - 8. set the IPv6 SA as the local address of this node.
 - 9. set the IPv6 DA of IPv6-SRH-1 to the first segment of the SRv6 Policy in of SRH-1 segment list.
 - 10. set the IPv6 DA of IPv6-SRH-2 to the first segment of the SRv6 Policy in of SRH-2 segment list.
 - 11. ELSE
 - 12. drop the packet

SRv6 Data Plane Solution Option2-Elimination Function

- End. B. Elimination: Packet Elimination Function
 - 1. IF NH=SRH & SL>0 & "the packet is not a redundant packet", THEN
 - do not decrement SL nor update the IPv6 DA with SRH[SL]
 - extract the value of DetNet TLVs from the SRH
 - 4. create a new outer IPv6+SRH header
 - insert the policy-instructed segment lists in the newly create SRH and add the retrieved DetNet TLVs in the newly createdSRH
 - 6. remove the incoming outer IPv6+SRH header.
 - 7. set the IPv6 DA to the first segment of the SRv6 Policy in the newly created SRH
 - 8. ELSE
 - 9. drop the packet

DetNet SRv6 Data Plane Solution Example



Next Step

- Collect Feedback from SPRING
- Comments and discussions in the mailing list
- Seek for Corporation

Thanks

SRv6 Based PREOF

SRv6 based DetNet

- SRv6 Network Programming:
 - Service Protection:
 - Carry Flow Identification and Sequence Number in optional TLV;
 - Define new functions for packet replication & elimination

