SRv6 Tagging proxy

draft-eden-srv6-tagging-proxy-00

Yukito Ueno (NTT Communications),
Ryo Nakamura (The University of Tokyo),
Teppei Kamata (Cisco Systems)
Interop Tokyo 2019 ShowNet NOC team
SRv6 Proxy behaviors and multiplexing

2 behavior types of SRv6 proxy

- **End.AS, End.AD**
 - Not chain agnostic
 - Proxy:Chain = 1:1

- **End.AM**
 - Chain agnostic
 - Proxy:Chain = 1:N
 - SRv6 insertion only
To deploy practical service chain

From experience of ShowNet in Interop Tokyo, we needed:
• SRv6 proxies for most middle boxes
• Dedicated chains for each user resulting in 200-300 chains
• Both IPv4 and IPv6 connectivity for each user

SRv6 proxy which can achieve the above requirements is needed but:
• End.AS: Not chain agnostic
• End.AD: Not chain agnostic
• End.AM: SRv6 insertion only
End.AT (SRv6 Tagging*1 proxy)

We proposed a new type of SRv6 proxy which supports:

- Chain agnostic configuration
- Transparency to chain changes
- Both IPv4 and IPv6 in SRv6 encapsulation mode

*1 "Tagging" means multiplexing chains by embedding a cache index into the inner packet header as a tag.
End.AT in detail

An IPv4 in SRv6 packet comes

IPv6 hdr, dst=6::1
SID [6::1, 6:a::] SL=1
IPv4 hdr, ToS 0
Payload

End.AT Proxy

Service

Cache Entry

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
End.AT in detail

Store the outer IPv6 and SR header into a cache entry indexed by the argument field of SRv6 SID

<table>
<thead>
<tr>
<th>IPv6 hdr, dst=6::1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SID [6::1, 6:a::] SL=1</td>
</tr>
<tr>
<td>IPv4 hdr, ToS 0</td>
</tr>
<tr>
<td>Payload</td>
</tr>
</tbody>
</table>

End.AT Proxy

<table>
<thead>
<tr>
<th>Index</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IPv6/SRv6 hdrs</td>
</tr>
</tbody>
</table>

Service
End.AT in detail

Embed argument value into the ToS or TC field of inner IP header and transmit the decapsulated inner packet
End.AT in detail

Restore the outer IPv6 and SR header from the cache by using ToS or TC value as a tag
Characteristics

• Chain agnostic
 • Up to 256 paths (because of 8bit ToS field)
• Transparent to chain changes
• Stateless
 • No cache expiration mechanism needed (overwritten every time packet comes)

• Incompatible with QoS
 • Due to exploiting ToS or TC field
 • In need of transparency of service functions

Advantage

Disadvantage
Implementation status

• Linux AF_XDP implementation
 • https://github.com/edenden/end.ac
 • Used for all IPv4 traffic in ShowNet 2019

• Linux kernel implementation (out-of-tree)
 • https://github.com/upa/linux/tree/seg6-shownet
 • Tested by IXIA and Spirent testers in ShowNet 2019
Q & A