STIR Certificate delegation

IETF 106
STIR WG
Jon - Singapore - Nov 2019
Specification sets out to explain:
- how delegation of RFC8226 certificates works
- how AS/VS deal with certificate chains
- interaction with ACME

It’s short, hopefully doesn’t need to be much longer

Supports a number of enterprise use cases
- Also meaningful for some OTT/CPaaS providers
- End users? Maybe someday, not current focus
Changes since last time

• Added some language on TNAuthList permissions
 – They are additive
 • If there’s a list of OCNs, then that cert can sign for any of those OCNs
 • If both OCNs and TN ranges are present, it can sign for the superset of all TNs under those OCNs and the TN ranges

• More on collapsing the cert chain
 – If the same CA issues a delegate cert that issued the parent, the trade-off of just not issuing the cert as a delegate

• More on subcerts
 – Basically to leave the door open to specifying them, if we need them – hopefully we won’t
Changes (2)

• Left over from our last meeting
 – Sticking with x5u rather than x5c
 • If people want to start using x5c, fine, though

• No need for the “good bit”
 – Assumed that the CAs issuing these certs are performing any necessary validation
 • Largely to make sure that at TN delegation fits within an OCN range
 • If you want to also check it at the VS, feel free

• For now, nothing about ACME STAR
 – Will be in the short-lived certs draft, if we turn out to need it
Next Steps

• The marketplace is definitely kicking the tires on this
• ATIS still figuring out what it wants to say
• Maybe hold this for another cycle
 – Might we worth getting some more eyes on it
• Basically, this should be ready to advance
BACK UP
Why are we talking about this?

• Sometimes, outbound calls will not transit the AS of the carrier who owns the calling party number
 – Common case is enterprises who use LCR for outbound calls across multiple providers
 – Some “legitimate spoofing” cases do this too
• Motivation: push credentials from TN owners to an AS able to sign for the call
• Alternative: let outbound carriers sign even though they don’t own the number
 – If we just allow carriers to sign for any number, what’s the point of STIR?
 • Enables traceback, which is a good start, but real-time authorization/blocking is the direction of the industry
SPCs and TNs

- Early deployment is based on SPCs
 - Specifically, OCN-level certs
- Some non-carrier entities probably should have SPCs
 - Assigned complex, non-contiguous and large set of TNs
 - Carriers in all but name (and regulation)
- But many enterprises have simple, stable TN blocks
 - Or even just want to sign calls from a single dial-out number
- Delegation from SPCs to TNs requires understanding when a TN range is “encompassed” by an SPC
 - But that’s something verifiers need to understand about SPCs anyway when a call from a TN arrives
 - The real question is when is “encompassing” checked: when certs are issued, or during call processing at the VS?
Delegation & Authority

- Delegation built-in to certificates
 - RFC5280 describes path construction and path validation
 - STIR uses SKID/AKID delegation
 - A root authority assigns certificates to number assignees
 - Could contain OCNs or TNs/blocks
- Assignees then delegate individual TNs or blocks to enterprises
 - Authentication Service signs with delegate certificate
 - Verification Service does path validation

Diagram:
- Root Authority
 - OCNs / 10,000 TNs
 - CSP
 - 100 TNs
 - 1 TN
 - Enterprise Block
 - Single
 - Enterprise