2019/11/19 @ IETF 106 Singapore

Distributed SUIT Architecture Model

Seoyun Choi,

Sangmyung University

Jong-Hyouk Lee,

Sangmyung University

Jung-Soo Park

ETRI

Contents

Traditional SUIT Architecture

Proposal

Next Step

Traditional SUIT Architecture

- Adopting Client-Server model
 - Manifests and firmware images are downloaded from 'firmware servers'

Traditional SUIT Architecture

- Problems
 - 1. Client-server architecture
 - can cause overhead on servers and update failures may occur
 - servers can be targeted by an attacker for use in an attack

- 2. Author-disappearing
 - If authors disappear, firmware consumers who have not yet updated to the latest version cannot catch up

Traditional SUIT Architecture

- Author-disappearing issue
 - Maintenance of servers is dependent on the author's management
 - Data is not available without servers

- Current SUIT architecture has shortcomings
 - adopting traditional client and server model
 - cannot deal with an <u>'author-disappearing issue'</u>
- Blockchain can solve the shortcomings
 - By providing <u>distributed storage (database)</u> for manifests and firmware image files
 - By providing <u>irreversibility</u> for manifests and firmware image files

- Solving an Author-disappearing issue
 - Even an author's disappeared, data is keep stored on blockchain because it's irreversible

Author

• Private or Consortium platform by cases

- For Large Companies producing IoT devices
 - Private Blockchain platform

- SMEs with higher possibility of author-disappearing issues
 - Consortium Blockchain platform

Thank You!

- Next Step
 - Submit a information model draft and improve with comments and discussions
 - Join hackathon with implementation

- Contact Info
 - Speaker: Seoyun Choi
 - seoyun@pel.smuc.ac.kr

Backup #1

- Types of Blockchain Architectures
 - Public vs Consortium vs Private

- permissionless
- every node can read & write data
- opened system to
 anyone
- risky...

<Consortium Blockchain>

- permissioned
- selected nodes can read & write data
- sharing system for an union of small companies

<Private Blockchain>

- permissioned
- selected nodes can read & write data
- private system for a large company

Backup #2

- TPS(Transaction per Second) and Confirmation
 - Bitcoin vs Ethereum vs Hyperledger Fabric

<Bitcoin>

- Block interval: 10 minutes (600 seconds)
- Average number of transactions on a block: 4200
- TPS = $\frac{4200}{600}$ = 7 (tps)
- Confirmation Time = 60 minutes

<Hyperledger Fabric >

- Block interval: N/A
- Average number of transactions on a block: depends on customization
- TPS = close to 3500 tps (depends on customization)
- Confirmation Time = N/A

<Ethereum>

- Block interval: 12~15 seconds
- Average number of transactions on a block: 150~450
- TPS = $\frac{150 \sim 450}{15} = 10 \sim 30$ (tps)
- Confirmation Time = about 2 minutes (120 seconds)