Distributed SUIT Architecture Model

Seoyun Choi,
Sangmyung University

Jong-Hyouk Lee,
Sangmyung University

Jung-Soo Park
ETRI
Contents

• Traditional SUIT Architecture

• Proposal

• Next Step
Traditional SUIT Architecture

- Adopting Client-Server model

- Manifests and firmware images are downloaded from ‘firmware servers’
Traditional SUIT Architecture

• Problems

1. Client-server architecture
 • can cause overhead on servers and update failures may occur
 • servers can be targeted by an attacker for use in an attack

2. Author-disappearing
 • If authors disappear, firmware consumers who have not yet updated to the latest version cannot catch up
Traditional SUIT Architecture

- **Author-disappearing issue**
 - Maintenance of servers is dependent on the author’s management
 - Data is not available without servers
 - e.g.,
Proposal

- Current SUIT architecture has shortcomings
 - adopting traditional client and server model
 - cannot deal with an ‘author-disappearing issue’

- Blockchain can solve the shortcomings
 - By providing distributed storage (database) for manifests and firmware image files
 - By providing irreversibility for manifests and firmware image files
Proposal

- Solving an Author-disappearing issue

- Even an author’s disappeared, data is keep stored on blockchain because it’s irreversible

 e.g.,

 Status of an Author
 Firmware Server
 Status Tracker
 Status of a Consumer

 firmware version 4.0
 firmware version 5.0

 Author disappearing

 success
 missing

 Update Completed
 Update Failed
Proposal

• Proposed architecture

• Firmware Server → Blockchain
 • Distributed storage
 • Data is irreversible

• provides
 • high availability
 • high reliability
Proposal

• Proposed architecture

• To resolve bottle-neck problem
 • = registration node
 • Process node registration based on IP
 • = retrieval node
 • Retrieve the ip, URL for downloading a firmware image
Proposal

- Private or Consortium platform by cases
 - For Large Companies producing IoT devices
 - Private Blockchain platform
 - SMEs with higher possibility of author-disappearing issues
 - Consortium Blockchain platform
Thank You!

• Next Step
 • Submit a information model draft and improve with comments and discussions
 • Join hackathon with implementation

• Contact Info
 • Speaker: Seoyun Choi
 • seoyun@pel.smuc.ac.kr
Types of Blockchain Architectures

- **Public vs Consortium vs Private**

 - **Public Blockchain**
 - permissionless
 - every node can read & write data
 - opened system to anyone
 - risky...

 - **Consortium Blockchain**
 - permissioned
 - selected nodes can read & write data
 - sharing system for an union of small companies

 - **Private Blockchain**
 - permissioned
 - selected nodes can read & write data
 - private system for a large company
TPS(Transaction per Second) and Confirmation

- **Bitcoin vs Ethereum vs Hyperledger Fabric**

<Bitcoin>
- Block interval: 10 minutes (600 seconds)
- Average number of transactions on a block: 4200
- \(\text{TPS} = \frac{4200}{600} \approx 7 \) (tps)
- Confirmation Time = 60 minutes

<Ethereum>
- Block interval: 12~15 seconds
- Average number of transactions on a block: 150~450
- \(\text{TPS} = \frac{150~450}{15} \approx 10~30 \) (tps)
- Confirmation Time = about 2 minutes (120 seconds)

<Hyperledger Fabric >
- Block interval: N/A
- Average number of transactions on a block: depends on customization
- \(\text{TPS} = \text{close to 3500 tps} \) (depends on customization)
- Confirmation Time = N/A