HyStart++: Modified Slow Start for TCP

TCPM, IETF 106

Praveen Balasubramanian, Yi Huang, Matt Olson
HyStart Recap

- Slow Start can overshoot ideal send rate and cause massive packet loss

- HyStart: Exit slow start early based on Delay Increase algorithm
 - Inter-Packet Arrival algorithm does not perform well due to ACK compression

- Delay Increase algorithm works well but has false positives
 - Latency fluctuations on wireless links
 - Transient queue buildup
HyStart “Delay Increase” algorithm

• Keep track of minimum observed RTT in each round in slow start

• For rounds where cwnd is at or higher than MIN_SSTHRESH and N_RTT_SAMPLE RTT samples have been obtained
 Eta = clamp(MIN_ETA, lastRoundMinRTT / 8, MAX_ETA)
 if (currentRoundMinRTT >= (lastRoundMinRTT + Eta))
 ssthresh = cwnd
 exit slow start

• MIN_SSTHRESH = 16, MIN_ETA = 4 msec, MAX_ETA = 16 msec, N_RTT_SAMPLE = 8
HyStart++

- HyStart “Delay Increase” for only the initial slow start
- Compensate for premature slow start exit
 - Congestion Avoidance algorithm can take time to ramp up
- Use Limited Slow Start (RFC3742) until next congestion signal

- For each arriving ACK in LSS, where N is the number of previously unacknowledged bytes acknowledged in the arriving ACK:
 \[
 K = \frac{cwnd}{LSS_DIVISOR \times ssthresh}
 \]
 \[
 cwnd = \max(cwnd + \frac{N}{K}, CA_cwnd())
 \]
- \(LSS_DIVISOR = 0.25\)
Test framework & Metrics

• A/B test framework using emulated WAN environment

• Test parameters
 • Latency
 • bottleneck buffer size
 • Bandwidth
 • artificial random loss

• Metrics
 • Goodput
 • Retransmitted bytes %
 • Fast retransmits
 • Timeouts
 • Loss recovery success rate
Results

• 100 Mbps bandwidth, BDP size bottleneck buffer

• For large RTT flows (100 msec)
 • Up to 39% improvement in average and P90 goodput for short flows
 • Up to 14% improvement in average and P90 goodput for long flows

• No noticeable improvement for small RTT flows (50 msec, 25 msec)

• Across all tests
 • Number of bytes retransmitted reduced by 50%
 • Number of RTOs reduced by 36%
 • Loss recovery success rate improves 43.48% -> 52%

• Awaiting results from production A/B test
 • Preliminary numbers show 20% reduction in retransmissions – not scoped
Status & Next Steps

• HyStart++ is deployed on by default for all connections
 • Windows 10 May 2019 Update onwards
 • Windows Server 2019 1903 version onwards

• Draft Status
 • draft-balasubramanian-tcpm-hystartplusplus-01 posted

• More A/B tests, please suggest interesting test cases

• Future: compare HyStart++, BBR STARTUP phase, and Paced Chirping

• Adopt document in tcpm