
cTLS

draft-rescorla-tls-ctls-03
Eric Rescorla, Richard Barnes, Hannes Tschofenig

What problems we are trying to solve?

● Legacy cruft in TLS 1.3 handshake
● Ability to have reduced profiles of TLS

○ Small wire and size for constrained applications
○ “Simple” TLS for applications which don’t need the entire feature set (e.g., 0-RTT)

● Clearer separation between handshake and record layer
○ Allow handshake to be used with other record layers (e.g., QUIC)

Many of these were issues we punted out of 1.3

Motivating Use Cases

● QUIC
● ATLS
● LAKE
● EAP

Two (and a half) technical pieces

● Clean up the handshake messages a bit
● A specialization mechanism for describing subsets of TLS
● More clearly delineate how to plug handshake into new record layers

Clean up handshake messages

● Replace all integers with varints
● Remove some unnecessary “legacy” fields

○ E.g., session_id
● Remove handshake message length from Handshake framing

○ All messages are already self-describing

One difficulty: backward compatibility

Specialization Mechanism

● TLS is a general protocol
○ But not everyone wants all the flexibility

● General idea: monomorphize along individual axes (e.g., version)
○ Nail down the value of that axis
○ Remove on-the-wire representation of the negotiation point for that axis
○ Transcript is reconstructed to include what would have been sent

● Specialization with forward-compatibility
○ Remove unneeded extensions … but otherwise allow extensions
○ Compress known certificates … but also allow unknown certificates

One way of thinking about this

 +---------------+---------------+---------------+
 | Handshake | Application | Alert |
 +---------------+---------------+---------------+ +---------+
 | cTLS Compression Layer |<---| Profile |
 +---------------+---------------+---------------+ +---------+
 | cTLS Record Layer / Application |
 +---------------+---------------+---------------+

JSON Syntax

● Specializations are defined in a JSON syntax
● Partly just a formalism
● But also provides a machine readable form so you could automatically

monomorphize
● Should we define a canonical wire encoding/defined profiles, etc.?

Example: JSON Syntax

 {
 "version" : 772,
 "cipherSuite" : "TLS_AES_128_GCM_SHA256"
 }

● This means “do only TLS 1.3 with AES_128_GCM_SHA256”
● Omit “supported_versions” and “cipher_suites” fields on the wire
● Decompressed transcript has single-valued fields

Predefined Extensions

● Predefined extensions don’t appear on the wire
○ Generally just defined as fixed hex strings
○ But do appear in the transcript

● Otherwise extensions are encoded as usual
● All extensions have to appear in code point order

○ Except for PSK, obviously!
○ This is a change from TLS 1.3
○ … but it’s compatible

Extended example

 {
 "version": 772,
 "cipherSuite": "TLS_AES_128_CCM_8_SHA256",
 "dhGroup": "X25519",
 "signatureAlgorithm": "ECDSA_P256_SHA256",
 "randomSize": 8,
 "finishedSize": 8,
 "clientHelloExtensions": {
 "server_name": "000e00000b6578616d706c652e636f6d",
 },
 "certificateRequestExtensions": {
 "signature_algorithms": "00020403"
 },
 }

Known Certificates

● A map of certificates in hex and a short nickname
● Nickname just gets encoded in the CertificateEntry field

○ This means they need to be distinguishable from certs
○ Make them short, don’t start with 0x30, etc.

● Expanded in the transcript like everything else

Initial Performance Numbers (short Finished,

Random)

 ECDHE PSK
 ------------------ ------------------
 TLS CTLS Overhead TLS CTLS Overhead
 --- ---- -------- --- ---- --------
 ClientHello 132 50 10 147 67 15
 ServerHello 90 48 8 56 18 2
 ServerFlight 478 104 16 42 12 3
 ClientFlight 458 100 11 36 10 1
 ===
 Total 1158 302 45 280 107 21

Handshake/Record Layer Separation

● These are nominally separate but actually tied together
● QUIC separates them

○ TLS 1.3 handshake
○ Its own record layer

● Plan: firm up the interface and requirements on the “record layer”
○ Really retconning what happened in QUIC

Adopt as WG draft?

