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-0\% HAD SOME PROBLEMS

Ticket oracle
HRR key mismatch

Probing attacks (inconsistent cryptographic configuration)

https://github.com/chris-wood/encrypted-sni-model
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RAOT Cavse(s)

Lack of proper bindings:

e Between ESNI and CH contents, including resumption PSKs
e Between CH1 and CH2 in the event of HRR
e Between ESNI and remaining handshake secrets

Proposed solution:

e Encrypt (tunnel) the entire ClientHello
e Tie CH2to CH1 for HRR
e Make handshake secrets depend on ESNI block



PROBABLY WRONG STRAWMAN TVNNELLING
PROPOSAL

struct {

CipherSuite suite; // for ESNI

KeyShareEntry key share; // for ESNI

opaque record digest<0..2716-1>;

opaque chl binder<0..256>; // TBD

opaque encrypted ch<0..2716-1>; // ClientHelloInner
} ClientEncryptedCH;



WHAT IS THE TRANSCRIPT?

ESNI Accepted — ClientHelloInner
ESNI Rejected (fallback) — ClientHelloOuter

e This includes the encrypted ClientHelloInner
How does the client know what happened?

e Trial decryption



HOw DOES THIS HELP?

Entire ClientHelloInner is protected
e Prevents changing any piece
CH2 contains a hash of CH1
e Prevents mix-and-match between CH1 and CH2

Handshake secrets depend on ESNI block

e Option 1: ESNI Nonce is part of transcript, and so affects handshake keys
e Option 2: Explicitly inject ESNI-based keys into key schedule



ISN'T TMIS REALLY HVGE?

ClientHelloOuter is roughly 2X the normal size

e |Includes an ordinary ClientHello
e Real problem with post-quantum key exchange

Solution: “hoist’ extensions from ClientHelloInner into ClientHelloOuter

e Client removes duplicate values from ClientHelloInner when sending
e Client-facing server restores them after decrypting ESNI block
e |mportant they be authenticated as part of ESNI block

o E.g., Include a hash of the value of the extensions



OPEN ISSVE; HANDSHAKE KEYS

Handshake keys must be depend on ESNI block (prevent HRR oracles)
Option 1: Nonce as part of transcript

e Maybe allows unmodified back-end server
e Requires more assumptions about transcript secrecy and the nature of HKDF

Option 2: Inject a key (no nonce) derived from ESNI key into the key schedule

e Requires modifying back-end server
e Seems to rely on simpler assumptions

Proposed resolution: publish draft-06 with Option 1 while we model both. Follow
up on list. 10



BUNDLE MULTIPLE ESNICoNFIGS (PR #200)

Problem:

e Currently one ESNIConfig per HTTPSVC.

e \What if the HTTPSVC record you pick has an ESNIConfig version you don'’t
support?

Solution: Bundle all your ESNIConfig objects into ESNIConfigs, put thatin
HTTPSVC
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FLATTEN ESNICONFIG (PR #20))

Problem:

e ESNIConfig contains a list of parameters plus multiple KeyShares

e David Benjamin suggests flattening so you have one KeyShare per
ESNIConfig
o More keys — more ESNIConfigs

Upside: Implementation simplicity (?)
Downside: Duplication

Proposal: Discuss.
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NEXT STEPS

Publish -06
Adopt HPKE for ClientHello encryption (?)
Resolve DNS extensibility PRs #200 and #201

Rename document? Encrypted ClientHello - ECHO

Start WGLC in early 2020
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https://github.com/tlswg/draft-ietf-tls-esni/pull/200
https://github.com/tlswg/draft-ietf-tls-esni/pull/201

