ENCRYPTED SMNE CLIENT
HELLS

draft-ietf-tls-esni-05
Eric Rescorla, Kazuho Oku, Nick Sullivan,
Christopher A. Wood

IETF 106 - TLS - Singapore

-0\% HAD SOME PROBLEMS

Ticket oracle
HRR key mismatch

Probing attacks (inconsistent cryptographic configuration)

https://github.com/chris-wood/encrypted-sni-model

https://github.com/chris-wood/encrypted-sni-model

Client C

ClientHello1: (g*, Enc(K

pub
sni

Att. A

, (sn@, nonce), g*))

ClientHello1: (g%, Enc(KP", (sni,nonce), g*), Ticket[SNI=X])

sni ?

Server S

Second Flight: SH, ...

Compare SNIs:
Accept ticket ifsni matches X

Check for resumption:
sni = Xif PSK accepted

Client C

Att. A Server S

ClientHello1: (g”,Enc

Kpub

ni » (87, nonce), g*))

A

HRR!:

()

ClientHello2: (g* ,Enc(K

pub
sni ?

(sni, nonce), g%))

ClientHello2: (g, Enc(KP“®, (dummysni, dummynonce), g*))

sni ?

Derive Keys:
ss = DH(g", g¥)
hk = KDF(ss + secret)

Second Flight: SH, Enc(ss, (EE = dummynonce, CERT = Cert,...)

hk = KD

Derive Keys:
ss = DH(g%, g¥)

F(ss+77)

— —

RAOT Cavse(s)

Lack of proper bindings:

e Between ESNI and CH contents, including resumption PSKs
e Between CH1 and CH2 in the event of HRR
e Between ESNI and remaining handshake secrets

Proposed solution:

e Encrypt (tunnel) the entire ClientHello
e Tie CH2to CH1 for HRR
e Make handshake secrets depend on ESNI block

PROBABLY WRONG STRAWMAN TVNNELLING
PROPOSAL

struct {

CipherSuite suite; // for ESNI

KeyShareEntry key share; // for ESNI

opaque record digest<0..2716-1>;

opaque chl binder<0..256>; // TBD

opaque encrypted ch<0..2716-1>; // ClientHelloInner
} ClientEncryptedCH;

WHAT IS THE TRANSCRIPT?

ESNI Accepted — ClientHelloInner
ESNI Rejected (fallback) — ClientHelloOuter

e This includes the encrypted ClientHelloInner
How does the client know what happened?

e Trial decryption

HOw DOES THIS HELP?

Entire ClientHelloInner is protected
e Prevents changing any piece
CH2 contains a hash of CH1
e Prevents mix-and-match between CH1 and CH2

Handshake secrets depend on ESNI block

e Option 1: ESNI Nonce is part of transcript, and so affects handshake keys
e Option 2: Explicitly inject ESNI-based keys into key schedule

ISN'T TMIS REALLY HVGE?

ClientHelloOuter is roughly 2X the normal size

e |Includes an ordinary ClientHello
e Real problem with post-quantum key exchange

Solution: “hoist’ extensions from ClientHelloInner into ClientHelloOuter

e Client removes duplicate values from ClientHelloInner when sending
e Client-facing server restores them after decrypting ESNI block
e |mportant they be authenticated as part of ESNI block

o E.g., Include a hash of the value of the extensions

OPEN ISSVE; HANDSHAKE KEYS

Handshake keys must be depend on ESNI block (prevent HRR oracles)
Option 1: Nonce as part of transcript

e Maybe allows unmodified back-end server
e Requires more assumptions about transcript secrecy and the nature of HKDF

Option 2: Inject a key (no nonce) derived from ESNI key into the key schedule

e Requires modifying back-end server
e Seems to rely on simpler assumptions

Proposed resolution: publish draft-06 with Option 1 while we model both. Follow
up on list. 10

BUNDLE MULTIPLE ESNICoNFIGS (PR #200)

Problem:

e Currently one ESNIConfig per HTTPSVC.

e \What if the HTTPSVC record you pick has an ESNIConfig version you don'’t
support?

Solution: Bundle all your ESNIConfig objects into ESNIConfigs, put thatin
HTTPSVC

11

FLATTEN ESNICONFIG (PR #20))

Problem:

e ESNIConfig contains a list of parameters plus multiple KeyShares

e David Benjamin suggests flattening so you have one KeyShare per
ESNIConfig
o More keys — more ESNIConfigs

Upside: Implementation simplicity (?)
Downside: Duplication

Proposal: Discuss.

12

NEXT STEPS

Publish -06
Adopt HPKE for ClientHello encryption (?)
Resolve DNS extensibility PRs #200 and #201

Rename document? Encrypted ClientHello - ECHO

Start WGLC in early 2020

13

https://github.com/tlswg/draft-ietf-tls-esni/pull/200
https://github.com/tlswg/draft-ietf-tls-esni/pull/201

