
TLS Batch Signing

Fun with Merkle trees

David Benjamin

TLS handshake costs

● Key derivations and other symmetric crypto
○ Comparatively cheap

● (EC)DH operation
○ Ephemeral key with fast EC curve

● Signature with long-lived key
○ May be expensive
○ Faster algorithms may be unavailable (customer-provided RSA key)
○ Long-lived secrets may have extra protections (RPC to remote key, HSM, etc)

Can we lower the signature costs?

Batch signatures

● Combine signing inputs into Merkle tree
● Sign the root once
● Ship Merkle tree paths to each client

 HashLeaf(msg) = Hash(0x00 || msg)
 HashNode(left, right) = Hash(0x01 || left || right)

 opaque Node[Hash.length];

 struct {
 uint32 index;
 Node path<Hash.length..2^16-1>;
 opaque root_signature<0..2^16-1>;
 } BatchSignature;

Example

Input 1

Hash Blinder

Hash

Input 2

Hash Blinder

Hash

Hash

Input 3

Hash Blinder

Hash Pad

Hash

Hash
Signature

Signature for input 2

Signature

Blinder

Hash

Hash

Input 1

Hash Blinder

Input 3

Hash Blinder

Hash Pad

Input 2

Hash

Hash

Hash

Hash

Blinder

Hash

Hash

Signature

Index = 2

Verifying

● Hash input
● Recompute root hash by hashing path nodes

○ Index determines whether to hash on left or right

● Verify signature against recomputed root

 HashLeaf(msg) = Hash(0x00 || msg)
 HashNode(left, right) = Hash(0x01 || left || right)

 opaque Node[Hash.length];

 struct {
 uint32 index;
 Node path<Hash.length..2^16-1>;
 opaque root_signature<0..2^16-1>;
 } BatchSignature;

Advertising support

● New SignatureScheme code points specify hash and base algorithm
○ ecdsa_secp256r1_sha256_batch
○ ecdsa_secp384r1_sha384_batch
○ ecdsa_secp521r1_sha512_batch
○ ed25519_batch
○ ed448_batch
○ rsa_pss_pss_sha256_batch
○ rsa_pss_rsae_sha256_batch

Amortize signing costs

● While signer is busy, batch up inputs for the next signature
● N hashes multiplies signing capacity by 2N-1

○ 264 extra bytes in signature (using SHA-256) gives 128×
○ 360 extra bytes gives 1,024×
○ 680 extra bytes gives 1,048,576×...

● Signer and verifier TLS stacks must be modified
● Works with unmodified certificate and signing infrastructure

○ Only signing input changes

● Requires modified peers
○ Average load of existing deployments decreases if many peers support it
○ Under load, preferentially serve batchable peers as DoS mitigation

Details

● Domain separation
○ Signing inputs preserve input context string
○ Root is signed with distinct context string

● Blinding nodes avoid leaking information about tree siblings
○ Signing payloads are potentially confidential with ESNI
○ Costs one hash output in batch signature size

● Padding nodes come from other nodes in tree level
● Reveals some information about signer load

Questions?

https://tools.ietf.org/html/draft-davidben-tls-batch-signing-02

Bonus slides

Gratuitous slide-based animation

Verifying signatures

Signature

Blinder

Hash

Hash

Input 1

Hash Blinder

Input 3

Hash Blinder

Hash PadHash

Blinder

Hash

Hash Hash

Hash
Signature

Index = 2Input 2

HashHash input

Verifying signatures

Signature

Hash

Hash

Input 1

Hash Blinder

Input 3

Hash Blinder

Hash PadHash

Hash Hash

Hash
Signature

Index = 2Input 2

Hash path node

Blinder

Hash

Hash Blinder

Verifying signatures

Signature

Hash

Input 1

Hash Blinder

Input 3

Hash Blinder

Hash

Blinder

Pad

Hash Blinder

Hash

Hash
Signature

Index = 2Input 2

HashHash

Hash Hash path node

Hash

Verifying signatures

Signature

Input 1

HashHash Hash

Hash Blinder

Input 3

Hash Blinder

Hash

Blinder

Pad

Hash Blinder

Signature

Index = 2Input 2

Hash

Hash path node

Hash

Hash

Hash

Verifying signatures

Input 1

HashHash Hash

Hash Blinder

Input 3

Hash Blinder

Hash

Blinder

Pad

Hash Blinder

Index = 2

Hash Hash

Input 2

Hash

Verify root signature

Hash
SignatureSignature

