Low Latency Low Loss Scalable Throughput (L4S)

TCP Prague Status draft-ietf-tsvwg-ecn-l4s-id

Bob Briscoe, Independent about the work of people too numerous to list

<ietf@bobbriscoe.net>

TSVWG, IETF-106, Nov 2019

Motivation – recap

- Ultra-low queuing delay for all Internet applications
 - including capacity-seeking (TCP-like)
- Transition mechanisms
 - network side (not this talk)
 - dualQ coupled AQM
 - per-flow queuing

The trick: scalable congestion control

"Ultra-low" Q delay?

- ~ 1 ms
- Consistently for real-time apps
- median Q delay: 100-200µs
- 99%ile Q delay: 1-2ms
- ~10x lower delay than best 2nd gen. AQM
 - at all percentiles
- ...when hammering each AQM
 - fixed Ethernet
 - long-running TCPs: 1 ECN 1 non-ECN
 - web-like flows @ 300/s ECN, 300/s non-ECN
 - exponential arrival process
 - file sizes Pareto distr. α=0.9 1KB min 1MB max
 - 120Mb/s 10ms base RTT
- each pair of plots for one AQM is one experiment run

The 'Prague L4S requirements'

- for scalable congestion ctrls over Internet
 - Assuming only partial deployment of either FQ or DualQ Coupled AQM isolation for L4S
 - Jul 2015 Prague IETF, ad hoc meeting of ~30 DCTCP folks
 - categorized as safety (mandatory) or performance (optional)
- not just for TCP
 - behaviour for any wire protocol (TCP, QUIC, RTP, etc)
- evolved into draft IETF conditions for setting ECT(1) in IP
 - draft-ietf-tsvwg-ecn-l4s-id

Requirements

L4S-ECN Packet Identification: ECT(1)

Accurate ECN TCP feedback

Reno-friendly on loss

Reno-friendly if Classic ECN bottleneck

Reduce RTT dependence

Scale down to fractional window

Detecting loss in units of time

Optimizations

ECN-capable TCP control packets

Faster flow start

Faster than additive increase

Status against Prague L4S requirements (Jul'19) code: none (simulated) research private research opened RFC mainl

sysctl option

thesis write-up

default RACK

module option off

in progress

?

on

inherent

thesis write-up

default RACK

in progress

mandatory

inherent

open issue

simulated

thesis write-up

default off → on later

mandatory?

Requirements

Linux code: none | none (simulated) | research private | research opened | RFC | mainline |

Requirements | base TCP | DCTCP | TCP Prague |

L4S-ECN Packet Identification: ECT(1) | module option | mandatory

Accurate ECN TCP feedback

Reno-friendly if classic ECN bottleneck

Reno-friendly on loss

Optimizations

Faster flow start

Reduce RTT dependence

Scale down to fractional window

ECN-capable TCP control packets

Detecting loss in units of time

Faster than additive increase

Status against Prague L4S requirements (Nov'19)

sysctl option

research code

default RACK

module option off

in progress

module option

research code

default RACK

in progress

?

on

inherent

mandatory

mandatory

evaluat'n in progress

default off → on later

in BBRv2 alpha

research code

mandatory?

inherent

Linux anda:	nono	none (simulated)	rocoorob	privoto	rococrob	opopod	DEC		mainlina
Linux code:	Hone	none (simulated)	research	private	research	opened	RFC		mainline
Requirements				base TCP		DCTCP		TCP	Prague/BBRv2

Requirements
L4S-ECN Packet Identification: ECT(1)

Reno-friendly if classic ECN bottleneck

Accurate ECN TCP feedback

Reno-friendly on loss

Optimizations

Faster flow start

Reduce RTT dependence

Scale down to fractional window

ECN-capable TCP control packets

Detecting loss in units of time

Faster than additive increase

Accurate ECN TCP feedback

- Ilpo Järvinen contracted to upstream TCP Prague
 - AccECN first on priority list
- Structured into sequenced patches (Hackathon-106)
 - in prep for upstreaming to Linux base TCP stack

Reno-friendly if classic ECN bottleneck (tsvwg issue #16)

Solution

- design
 - discussion paper rationale analysis, pseudocode
- implementation Asad Ahmed contracted for this
 - branch of Linux TCP Prague ref implementation
- evaluation
 - · hackathon-106: testbed build in progress

Prevalence of problem?

- Argentinian ISP identified via Apple data
 - contacted ToS byte overwrite being fixed
- search for a single queue 3168 AQM continues

Networks with CE marking

 Percentage of reports that have seen any CE marking on any of the ECN enabled connections in a 12 hour period

Country	Percentage			
United States	0.2			
China	1			
Mexico	3.2			
France	6			
Argentine Republic	30			

Marking was mainly seen on the uplink

ECN deployment Padma Bhooma MAPRG 98th IETF Chicago March 2017

12

Reduce RTT dependence

- Introduced into L4S ECN side of BBRv2
- Tested in various combinations of CC & AQM
 - during Hackathon-106
- More testing then design iteration in progress

Scale down to fractional window

- Designed, implemented (Linux base stack) and evaluated (Reno & TCP Prague)
 - works smoothly complex design process, simple code
 - Research prototype
 - Not yet tested with other TCP Prague components
- Masters thesis of Asad Ahmed and open source code
 - link from L4S landing page
- Booked session to present in iccrg at IETF-107
 - brief preview in TCP Prague side meeting on Thu 08:30 (see next)

More this week...

TCP Prague Status Update: side meeting

- 08:30 09:30 Thu 21 Nov, Canning, IETF-106 Singapore
- Thursday, before tsvwg pt2, in same room
- will post remote access details (no meetecho)

L4S slot in tsvwg pt2

- DualQ Coupled AQM implementations and interops
 - Nokia L4S integration in WiFi Beacons product at BBWF19 (available Q1'2020)
 - Low Latency DOCSIS interops: CM hardware + CMTS implementations
 - 3GPP L4S ECN proposal into 3GPP

Open Source links

- Dual Queue Coupled AQM (Linux)
- L4S Demo/Test GUI (Linux)
- TCP Prague (ECT(1), ECN++, AccECN) (Linux)
- QUIC Prague (Linux, FreeBSD, Windows)
- SCReAM with L4S support (Linux, FreeBSD, Windows)
- BBRv2 with L4S support (Linux)
- ns3 network simulator L4S test suite
- Paced Chirping (Linux)
- all linked via L4S landing page https://riteproject.eu/dctth/#code

Low Latency Low Loss Scalable Throughput (L4S)

Q&A

Open issues #16: RFC3168 ECN in a FIFO

- Nov 2016, after 16 months of deliberation
 - WG chose ECT(1) for L4S ECN
 - CE ambiguous, but least worst compromise
 - L4S ECN coexists with 3168 ECN, if it's all FQ
- All academic ECN studies over the years (incl. 2017, 2019) found virtually no CE marking
 - using active measurement
- Mar 2017 study by Apple found CE marking
 - using passive measurement

Codepoint	IP-ECN bits	Meaning
Not-ECT	00	Not ECN-Capable Transport
ECT(0)	/ 10	Classic ECN-Capable Transport
ECT(1)	01	L4S ECN-Capable Transport
CE	11	Congestion Experienced

Networks with CE marking

 Percentage of reports that have seen any CE marking on any of the ECN enabled connections in a 12 hour period

Country	Percentage			
United States	0.2			
China	1			
Mexico	3.2			
France	6			
Argentine Republic	30			

Marking was mainly seen on the uplink

ECN deployment Padma Bhooma MAPRG 98th IETF Chicago March 2017

12

Open issues #1: RFC3168 ECN in a FIFO

Risk

- Assumed all RFC3168 ECN AQMs likely to be FQ_CoDel
 - So L4S traffic would coexist with TCP-Friendly
- What to do if assumption is unsound?

Ground truth

- Any FIFO RFC3168 ECN routers enabled?
 - Two CDNs testing for Echo CE
 - Access to results not assured
- Devised targeted FQ v FIFO test

Hi-risk: Run-Time Detection?

- L4S sender Measures RTT variance
- (To be implemented/tested)

Quantify flow imbalance

Testbed measurements (next slide)

Lo-risk, add advice to L4S expt:

 Limit experiment over your networks (e.g. disable on CDN ports) if RFC3168 AQM is or will be deployed

Open issues #1: RFC3168 ECN in a FIFO

