
Rich Authorization Requests
BOF Transactional OAuth, 18.11.2019

Torsten Lodderstedt, yes.com

Focus
● Use of OAuth in security sensitive scenarios, like

○ Open Banking
○ Strong Identity Attestation
○ (Qualified) Electronic Signatures
○ eHealth
○ eGovernment

Informed by
● Work on establishing an open banking ecosystem at yes.com
● Support of open banking API initiatives (PSD2 context)
● Work at OpenID Foundation’s Financial-Grade API WG
● Work at Cloud Signature Consortium
● Discussions with people who work in eHealth and eGovernment

Example: Authorization in Financial APIs

®

Requirements from PSD2 regulation

● Consent: customer consent is required, either for
○ individual requests or
○ as mandate for designated payment accounts and associated

payment transactions
● Dynamic Linking: payment initiation requests must must be bound to

amount and payee as approved by the customer

Example Authorization Data
{

 "instructedAmount":{

 "currency":"EUR",

 "amount":"123.50"

 },

 "debtorAccount":{

 "iban":"DE40100100103307118608"

 },

 "creditorName":"Merchant123",

 "creditorAccount":{

 "iban":"DE02100100109307118603"

 },

 "remittanceInformationUnstructured":"Ref Number Merchant"

}

User needs to consent to and RS needs to enforce this scope!

Access Token Scope

Example: Access to Account Information
{

 "access":{

 "balances":[

 {

 "iban":"DE40100100103307118608"

 },

 {

 "iban":"DE67100100101306118605"

 }

],

 "transactions":[

 {

 "iban":"DE40100100103307118608"

 }

]

 },

 "validUntil":"2017-11-01"

}

List of accounts and respective
permissions + duration of the
grant

Qualified Electronic Signature
{

 "credentialID":"60916d31-932e-4820-ba82-1fcead1c9ea3",

 "documentDigests":[

 {

 "hash":"sTOgwOm+474gFj0q0x1iSNspKqbcse4IeiqlDg/HWuI=",

 "label":"Credit Contract"

 },

 {

 "hash":"HZQzZmMAIWekfGH0/ZKW1nsdt0xg3H6bZYztgsMTLw0=",

 "label":"Contract Payment Protection Insurance"

 }

],

 "hashAlgorithmOID":"2.16.840.1.101.3.4.2.1"

}

Example: OpenID Connect
{

 "userinfo":{

 "email":{

 "essential":true

 },

 "email_verified":{

 "essential":true

 },

 "given_name":null,

 "family_name":{

 "value":"Meier"

 },

 "birthdate":null,

 "place_of_birth":null,

 "nationality":null,

 "address":null

 }

}

Privacy by Design & Data
Minimization require RP to list
individual claims

Commonalities
● Privileges very narrowly defined (and must also be enforced)
● Authorization data fine grained & structured (voluminous)
● Transaction authorization (one time & transaction specific values)
● Authorization data may contain PII - confidentiality is important
● Integrity and authenticity is generally a key requirement

Problem Statement Transport
● OAuth authorization code flow sends parameters as URI query parameters

via redirection in the user-agent
● Challenges

○ There is no cryptographical integrity and authenticity protection
○ There is no mechanism to ensure confidentiality of the request

parameters.
○ Authorization request URLs can become quite large in the scenarios just

described.

Problem Statement Representation
● Expressiveness of scopes is not sufficient for the scenarios just explained

○ No structure, no dynamic values - made for simple static access requests
○ Ambiguous (“openid email read”)

● Allocation of requested permissions to resource server specific access tokens
is hard (despite resource indicators)

(Selected) Solutions from the Wild

Additional Parameter
● OpenID Connect:

○ claims parameter
○ (signed) request objects

● PolishAPI:
○ scope_details parameter in

authorization request as HTTP
POST

○ Transaction specific Redirect
URI for authorization

POST https://api.testbank.com/v1/payments/sepa-credit-transfers

Content-Type: application/json

...

 {

 ..

 "scope": "pis",

 "scope_details": {

 "privilegeList": [

 {

 "pis:domestic": {

 "domesticPaymentRequest": {

 "recipient": {

 "accountNumber": "PL85114000000000000000000100",

 "name": "Jan Kowalski"

 },

 "sender": {},

 "transferData": {

 "description": "Transfer",

 "amount": "0.01",

 "currency": "PLN"

 },

 "deliveryMode": "STANDARD_D1"

 }

 }

 }

],

 "scopeGroupType": "PIS",

 "consentId": "b72fca1d-a2d6-486f-8f98-32f81459ad6f",

 "scopeTimeDuration": 5,

 "scopeTimeLimit": "2019-02-27T12:49:12.453Z",

 "throttlingPolicy": "PSD2_REGULATORY"

 }

}

Lodging Intent
● UK OB, NextGenPSD2, yes.com
● External resource contains the

authorization details
● Authorization request refers to

external resource (claims field or
dynamic scope value part)

POST /payments HTTP/1.1
Host: api.bank.example
Content-Type: application/json
Authorization: Bearer eyJraWQiOiJOQnlW...

{
 "creditor":"DE56378485858575858585",
 "instructedAmount": {"currency": "EUR", "amount": "123"},
 "remittanceInformationUnstructured": "Ref Number Merchant: ..."
}

HTTP/1.1 201 Created
Content-Type: application/json
Location: /payments/36fc67776

{
 "consentId": "36fc67776"
}

GET /authorise?response_type=code&
client_id=3630BF72-E979-477A-A8FF-8A338F07C852&
redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fcb&
scope=payment%3A36fc67776&
state=S8NJ7uqk5fY4EjNvP_G_FtyJu6pUsvH9jsYni9dMAJw&
code_challenge_method=S256&
code_challenge=5c305578f8f19b2dcdb6c3c955c0aa...
43917cd0f36 HTTP/1.1
Host: as.bank.example

Generic OAuth Solution?

Pushed Authorization Requests
https://tools.ietf.org/html/draft-lodderstedt-oauth-par

Pushed Authorization Requests (Overview)
● Based on previous work at OpenID Foundation’s FAPI working group
● Draft authors: Brian Campbell, Nat Sakimura, Dave Tonge, Filip Skokan,

Torsten Lodderstedt
● PAR complements JAR by providing an interoperable way to push the

payload of an authorization request object directly to the AS in exchange for a
"request_uri".

● Provided via new pushed authorization request endpoint

How does it look like?

Traditional OAuth Authorization Request
GET /authorize?response_type=code
&client_id=s6BhdRkqt3
&state=af0ifjsldkj
&redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb HTTP/1.1
 Host: as.example.com

Pushed Authorization Request
POST /as/par HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

response_type=code&
client_id=s6BhdRkqt3&
state=af0ifjsldkj&
redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb

Pushed Authorization Response
HTTP/1.1 201 Created
Cache-Control: no-cache, no-store
Content-Type: application/json

{
"request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y1LTC2",
"expires_in": 90

}

Authorization Request (according to JAR)
 GET /authorize?request_uri=
 urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y1LTC2 HTTP/1.1

Pushed Request Object
POST /as/par HTTP/1.1
Host: as.example.com
Content-Type: application/x-www-form-urlencoded
Authorization: Basic czZCaGRSa3F0Mzo3RmpmcDBaQnIxS3REUmJuZlZkbUl3

request=eyJraWQiOiJrMmJkYyIsImFsZyI6IlJTMjU2In0.eyJpc3MiOiJzNkJoZFJrcXQzIiwiYXVkIjoiaHR0cH
M6Ly9zZXJ2ZXIuZXhhbXBsZS5jb20iLCJyZXNwb25zZV90eXBlIjoiY29kZSIsImNsaWVudF9pZCI6InM2Q
mhkUmtxdDMiLCJyZWRpcmVjdF91cmkiOiJodHRwczovL2NsaWVudC5leGFtcGxlLm9yZy9jYiIsInNjb3BlIj
oiYWlzIiwic3RhdGUiOiJhZjBpZmpzbGRraiIsImNvZGVfY2hhbGxlbmdlIjoiSzItbHRjODNhY2M0aDBjOXc2R
VNDX3JFTVRKM2J3dy11Q0hhb2VLMXQ4VSIsImNvZGVfY2hhbGxlbmdlX21ldGhvZCI6IlMyNTYifQ.O49f
fUxRPdNkN3TRYDvbEYVr1CeAL64uW4FenV3n9WlaFIRHeFblzv-wlEtMm8-tusGxeE9z3ek6FxkhvvLEqE
pjthXnyXqqyJfq3k9GSf5ay74ml_0D6lHE1hy-kVWg7SgoPQ-GB1xQ9NRhF3EKS7UZIrUHbFUCF0MsRLb
mtIvaLYbQH_Ef3UkDLOGiU7exhVFTPeyQUTM9FF-u3K-zX-FO05_brYxNGLhVkO1G8MjqQnn2HpAzlBd
5179WTzTYhKmhTiwzH-qlBBI_9GLJmE3KOipko9TfSpa26H4JOlMyfZFl0PCJwkByS0xZFJ2sTo3Gkk488
RQohhgt1I0onw

Pushed Authorization Response
HTTP/1.1 201 Created
Cache-Control: no-cache, no-store
Content-Type: application/json

{
"request_uri": "urn:example:bwc4JK-ESC0w8acc191e-Y2LTC2",
"expires_in": 90

}

Authorization Request (according to JAR)
 GET /authorize?request_uri=
 urn%3Aexample%3Abwc4JK-ESC0w8acc191e-Y2LTC2 HTTP/1.1

Advantages
● Significantly improved security ...

○ Request Integrity
○ Client authentication

● … and robustness …
● … while offering a simple migration path
● Higher security level by passing signed/encrypted request objects
● redirect_uri can be dynamically registered for confidential clients
● Seems to be resistant against mix-up (analysis ongoing)

Rich Authorization Requests
https://tools.ietf.org/html/draft-lodderstedt-oauth-rar

Rich Authorization Requests
● Based on work in the FAPI WG and on OAuth.xyz
● Authors: Justin Richer, Brian Campbell, Torsten Lodderstedt
● Introduces new parameter authorization_details that is used to carry fine

grained authorization data in the OAuth authorization request as typed JSON
objects

● Can be used in addition or instead of the scope parameter in OAuth 2.0
● Same data structure is used in OAuth.xyz

Authorization_details (Syntax)
● Array of JSON objects, each of

them specifying a set of
permissions a clients wants to
obtain

● Element structure determined by
type field

● locations should be used to
assign every element to a
resource server (audience)

● draft introduces further common
data types, e.g. actions

authorization_details (Usage Examples)
URI parameter Request Object

GET /authorize?response_type=code
 &client_id=s6BhdRkqt3
 &state=af0ifjsldkj
 &redirect_uri=https%3A%2F%2Fclient.example.org%2Fcb
 &code_challenge_method=S256
 &code_challenge=K2-ltc83acc4h0c9w6ESC_rEMTJ3bww-uCHaoeK1t8U
 &authorization_details=%5B%7B%22type%22%3A%22account%5Finformati
 on%22%2C%22actions%22%3A%5B%22list%5Faccounts%22%2C%22read%5Fbal
 ances%22%2C%22read%5Ftransactions%22%5D%2C%22locations%22%3A%5B%
 22https%3A%2F%2Fexample%2Ecom%2Faccounts%22%5D%7D%5D HTTP/1.1
Host: server.example.com

{
 "iss":"s6BhdRkqt3",
 "aud":"https://server.example.com",
 "response_type":"code",
 "...
 "authorization_details":[
 {
 "type":"payment_initiation",
 "actions":[
 "initiate",
 "status",
 "cancel"
],
 "locations":[
 "https://example.com/payments"
],
 "instructedAmount":{
 "currency":"EUR",
 "amount":"123.50"
 },
 ...
 }
]
}

Processing
● AS renders user consent based on type and content of the authorization data

objects
● Authorization details are passed to RSs (via Access Token or Token

Introspection Response)
● Parameter “resource” (draft-ietf-oauth-resource-indicators) is used by client to

obtain RS-specific Access Tokens associated with the RS-specific
authorization data objects only

Advantages
● Versatile and type safe
● Data structures can be optimised for resource server/API/ use case - no “one

size fits all”
● Common data set elements to address common use cases
● Explicit assignment of permissions to resource servers (robust and explicit

audience restriction)
● Interoperable and easy way to issue RS-specific Access Tokens and Token

Introspections Responses (Data Minimization and Disambiguation)

