464XLAT Optimization for CDNs/Caches

draft-palet-v6ops-464xlat-opt-cdn-caches

Jordi Palet (jordi.palet@theipv6company.com)
Alejandro D’Egidio (adegidio@telecentro.net.ar)
Problem Statement

• In IPv6-only networks using NAT46 (464XLAT, MAP-T), IPv4-only devices flows to dual-stack CDNs/Caches/services are terminated as IPv4, which means extra translations and the subsequent unnecessary overload

• In equivalent IPv4-only CGN use cases, the CDNs provide “private” addresses (typically 100.64.0.0/10) to avoid exactly the same issues
Typical 464XLAT Deployment

Figure 1: Typical 464XLAT Deployment
IPv6-Capable device

However, if the devices or applications are IPv4-only, for example, most of the SmartTVs and Set-Top-Boxes available today, a non-optimal double translation will occur (NAT46 at the CLAT and NAT64 at the PLAT), as illustrated in Figure 4.

Figure 3: 464XLAT access to CDNs/Caches by IPv6-capable apps

Figure 4: 464XLAT access to CDNs/Caches by IPv4-only apps

Clearly, this is a non-optimal situation, as it means that even if there is a dual-stack service, the NAT46/CLAT translated IPv4 to IPv6 traffic flow, is unnecessarily translated back to IPv4, traversing the stateful NAT64. This has a direct impact in the need to scale the NAT64 beyond what will be actually needed if possible solutions.
IPv4-only device

IPv4-only device

Figure 4: 464XLAT access to CDNs/Caches by IPv4-only apps
IPv4-only device (optimized)

Figure 5: Optimized 464XLAT access to CDNs/Caches by IPv4-only apps
In Summary

Optimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache
In Summary

Optimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache

Suboptimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache

CLAT 4->6

PLAT 6->4

Optimal !

Suboptimal !
In Summary

Optimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache

Suboptimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache

Optimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache

Optimal!

Dual-Stack User → ISP IPv6-only → Dual-Stack CDN/Cache
Approach 1: DNS/Routing-based

• CLAT translate A records into AAAA:
 – WKP::A or NSP::A

• CDN/Cache provider configures dedicated interfaces to match WKP::A or NSP::A

www.example.com A 192.0.2.1
CLAT translated to 64:ff9b::192.0.2.1
CDN IPv6 interface must be 64:ff9b::192.0.2.1
Operator must have a specific route to 64:ff9b::192.0.2.1

• Issues:
 – Only works if “local/private” connectivity
 – CDN/Cache provider needs to do “something”
Approach 2: CLAT/DNS-proxy-EAMT

- NAT64/CLAT/CE is also a DNS proxy/stub resolver, so an internal interaction can be created.
- This approach uses existing IPv4 and IPv6 addresses (A, AAAA RRs), so no additional complexity for services.

Steps:
- Detection of IPv4-only devices or apps
- Detection of IPv6-enabled service
- Creation of EAMT entries
- Forwarding path for existing EAMT entries
- Maintenance of the EAMT entries
Approach 2 Example

- Example

www.example.com A 192.0.2.1
 AAAA 2001:db8::a:b:c:d
EAMT entry 192.0.2.1 2001:db8::a:b:c:d
NAT64/CLAT translated to 2001:db8::a:b:c:d
CDN IPv6 interface already is 2001:db8::a:b:c:d
Operator already has specific route to 2001:db8::a:b:c:d

1. A query for www.another-example.com A RR is received
2. www.another-example.com A 192.0.2.1
4. A conflict has been detected
5. The existing EAMT entry for 192.0.2.1 is set as invalid
Approach 2: Additional Considerations

- Behavior in case of multiple A/AAAA RRs
- Behavior in case of presence/absence of DNS64
- Behavior when using literal addresses or non IPv6-APIs
- False detection of a dual-stack host as IPv4-only
- Behavior in presence of HE
- Behavior in case of Foreign DNS
 - Devices/apps using other DNS
 - DNS privacy/encryption
 - DNS modified by user in OS
 - DNS modified by user in CE
 - Combinations of above
4.2.4. Forwarding path via stateful NAT for existing EAMT entries

Following this approach, if there is a valid EAMT entry, for a given IPv4-destination, the IPv6-native path pointed by the IPv6 address of that EAMT entry, will take precedence versus the NAT64 path, so the traffic will not be forwarded to the NAT64.

However, this is not sufficient to ensure that individual applications are able to keep existing connections. In many cases, audio and video streaming may use a single TCP connection lasting from minutes to hours. Instead, the CDN TTLs may be configured in the range from 10 to 300 seconds in order to allow new resolutions to switch quickly and to handle large recursive resolvers (with hundreds of thousands of clients behind them).

Consequently, the EAMT entries should not be used directly to establish a forwarding path, but instead, to create a stateful NAT entry for the 4-tuple for the duration of the session/connection.
Approach 3: CLAT-provider-EAMT

• Similar to previous one, but no "automated" EAMT
• Operator must push or CE must pull the table
• It will work even if user change DNS for STB, SmartTV, ...
• More control from the operator
 – EAMT pairs may be built “apart” from DNS
• Issues:
 – Increase complexity
 • Is the benefit worth for it?
 – Need to add TTL (from DNS) to EAMT
Solution for IPv6-only Services?

NOT POSSIBLE! ---> NO IPv4 connectivity

Dual-Stack User ISP IPv6-only IPv6-only Service

CLAT 4->6

PLAT 6->4

Optimal!

Dual-Stack User ISP IPv6-only IPv6-only Service

CLAT 4->6

Add A RRs even if IPv4 is not available
Next steps

• Become a WG item?

• Title change?

• New inputs? CDN/cache providers, others