
IETF
Embedded Web Package Use Case



EmbeddedEmbedded
Web technologies are increasingly used

for embedded systems. 
 

Already hundreds of millions of devices.



It's a big commons.It's a big commons.



It's currently a littleIt's currently a little
'other'.'other'.



file://file://
The most straightforward use cases just

use the file protocol



  
Some use cases also use a server,

basically loopback

https://localhosthttps://localhost



But the majority of devices are severely resource
constrained by comparison...



Ultimately your embedded device comes
with an application (at least one).

 
That application can't depend on the

network on first load



But it almost always will want to update
when the network is available.

 
I'd like to ship you an e-reader with some
books, or a cookbook with some recipes -

etc.  These exist as web resources, and
over time content, design, etc will change.



The Web has always assumed your first
interaction with a site would be after fetching

it from a domain.
 

Many features are designed around this,
creating some interesting challenges.



At the same time, the web has greatly
expanded its capabilities, including offline.

 
There is simply a single significant

disconnect: The assumption that first
content always comes from online.



 
How can I bridge the two worlds?



Today, embedded uses wind up solving/re-
solving much complexity to bridge this

gap.
 

What we really want is to simply bootstrap
a service worker with its offline content,
and then let all of the Web technologies

work fluidly as they do elsewhere..



This use case does not require a model of
universal trust and signing - simply a

uniform way to configure a specific device
or browser startup to trust a package

itself.



No local servers necessary
No "is it the web or isn't it?" disparity

 
It's just a standard offline webapp.



... the ability to provide with my image, a
service worker and bundle for foo.com,

and have it initialize.


