
Web Packaging Design
WPACK BoF, IETF 106, November 2019

Jeffrey Yasskin

Preliminary!

Outline

1. Package format
2. Origin Trust

Semantics of a package

https://server.example

/path/package1

https://foo.ex/bar.html

Content-Type: text/html
Content-Language: en-US

<html>
Hello
...

en-US

Content-Type: text/html
Content-Language: es-419

<html>
Hola
...

es-419

https://baz.ex/quux.js

Content-Type: text/javascript

export const name = 'quux';
...

https://foo.ex/cat

Content-Type: image/jpeg

image/jpeg

Content-Type: text/plain

 |__/,| (`\
 |_ _ |.--.))
 (T) /
(((^_(((/(((_/

text/*

Overall format

CBOR subset
● Invariant block:

○ Magic #
○ Version string
○ Primary/fallback URL

● Table of section starts
● Sections
● Total length

Described in draft-yasskin-wpack-bundled-exchanges.

Sections
● Index
● Manifest
● Signatures
● Critical section names
● Responses

https://wicg.github.io/webpackage/draft-yasskin-wpack-bundled-exchanges.html

Index section

A map
● URL ⇒

○ Content negotiation info ⇒
■ A range within the responses section.

Responses section

Index points to individual HTTP responses within this section, which are parsed
individually.

An HTTP response is represented as a map from header names to values,
followed by a body.

Does not represent trailers.

Currently assumes repeated header fields have been combined:
can't represent Set-Cookie.

https://httpwg.org/http-core/draft-ietf-httpbis-semantics-latest.html#field.order

Manifest section

URL of an App Manifest or other package metadata.

Critical sections section

Which other sections MUST the client understand?

Signatures section

● List of "authorities".
○ Could be X.509 certificates, raw public keys, or something else.
○ An X.509 certificate could represent a domain owner or something else.
○ Includes any certificates needed to build a chain.

● Each signature:
○ Identifies the signing authority.
○ Includes a validity window in time.
○ Identifies a URL that contains newer versions of itself.
○ Covers a particular subset of resources to allow multi-origin packages.

■ Resource hashes are signed, currently using MT's MICE.

● No design yet for counter-signatures.

Semantics of untrusted content

● Resource has a package URL and a claimed origin.
● Resource is cross-origin with:

○ TLS resources from the claimed origin.
○ Resources with a different claimed origin in the same package.
○ Unpackaged resources that are same-origin with the package.
○ Packaged resources in different packages served by same origin?

Origin Trust

Origin Trust

Sign the content with a certificate issued in the same way
as a server's TLS certificate.

Dangers

Intrinsic

● Off-path attackers
● Vulnerabilities last until signature

expiration

Avoidable

● Personalized data
● Mismatched content versions
● User ID transfer (Tracking)

● Transport->object security?

Mitigating the intrinsic dangers

Servers opt into the danger.

● Requires the "CanSignHttpExchanges" X.509 extension.
● Enabled by a CAA record.

Origin-trusted signatures are limited to 7 days.

Avoiding personalized data

Servers: Don't Do That. (With some advice for how)

Supported by a client-enforced block on stateful headers.

Making versions match

Signatures cover a full set of resources.

If the attacker removes one resource from a signed group, it doesn't fall back to
the network.

Fetching a resource not mentioned by the package goes to the network.

Blocking user ID transfer

Origin-trusted packages must be requested without credentials.

distributor URL = https://distributor.origin/<function(primary URL)>

Transport → Object security?

Are there more dangers introduced by this shift to object security?

The WG's charter includes looking into this.

Signed Exchanges?

Clarification and
Discussion

