
webtrans A. Frindell
Internet-Draft Facebook Inc.
Intended status: Standards Track E. Kinnear
Expires: 26 August 2021 T. Pauly
 Apple Inc.
 V. Vasiliev
 Google
 G. Xie
 Facebook Inc.
 22 February 2021

 WebTransport using HTTP/2
 draft-kinnear-webtransport-http2-02

Abstract

 WebTransport [OVERVIEW] is a protocol framework that enables clients
 constrained by the Web security model to communicate with a remote
 server using a secure multiplexed transport. This document describes
 a WebTransport protocol that is based on HTTP/2 [RFC7540] and
 provides support for unidirectional streams, bidirectional streams
 and datagrams, all multiplexed within the same HTTP/2 connection.

Note to Readers

 Discussion of this draft takes place on the WebTransport mailing list
 (webtransport@ietf.org), which is archived at
 <https://mailarchive.ietf.org/arch/search/?email_list=webtransport>.

 The repository tracking the issues for this draft can be found at
 <https://github.com/ekinnear/draft-webtransport-http2/issues>. The
 web API draft corresponding to this document can be found at
 <https://w3c.github.io/webtransport/>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

Frindell, et al. Expires 26 August 2021 [Page 1]

Internet-Draft WebTransport-H2 February 2021

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 26 August 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 3
 2. Protocol Overview . 3
 3. Session Establishment . 4
 3.1. Establishing a Transport-Capable HTTP/2 Connection . . . 4
 3.2. Extended CONNECT in HTTP/2 4
 3.3. Creating a New Session 4
 3.4. Limiting the Number of Simultaneous Sessions 5
 4. WebTransport Features . 5
 4.1. WT_STREAM Frame . 6
 4.2. WT_DATAGRAM Frame . 7
 5. Session Termination . 8
 6. Transport Properties . 8
 7. Security Considerations 9
 8. IANA Considerations . 9
 8.1. HTTP/2 SETTINGS Parameter Registration 9
 8.2. Frame Type Registration 9
 8.3. HTTP/2 Error Code Registry 10
 8.4. Examples . 10
 9. References . 12
 9.1. Normative References 12
 9.2. Informative References 13
 Acknowledgments . 14
 Authors’ Addresses . 14

Frindell, et al. Expires 26 August 2021 [Page 2]

Internet-Draft WebTransport-H2 February 2021

1. Introduction

 Currently, the only mechanism in HTTP/2 for server to client
 communication is server push. That is, servers can initiate
 unidirectional push promised streams to clients, but clients cannot
 respond to them; they can only accept them or discard them.
 Additionally, intermediaries along the path may have different server
 push policies and may not forward push promised streams to the
 downstream client. This best effort mechanism is not sufficient to
 reliably deliver messages from servers to clients, limiting server to
 client use-cases such as chat messages or notifications.

 Several techniques have been developed to workaround these
 limitations: long polling [RFC6202], WebSocket [RFC8441], and
 tunneling using the CONNECT method. All of these approaches have
 limitations.

 This document defines a mechanism for multiplexing non-HTTP data with
 HTTP/2 in a manner that conforms with the WebTransport protocol
 requirements and semantics [OVERVIEW]. Using the mechanism described
 here, multiple WebTransport instances can be multiplexed
 simultaneously with regular HTTP traffic on the same HTTP/2
 connection.

1.1. Terminology

 The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document follows terminology defined in Section 1.2 of
 [OVERVIEW]. Note that this document distinguishes between a
 WebTransport server and an HTTP/2 server. An HTTP/2 server is the
 server that terminates HTTP/2 connections; a WebTransport server is
 an application that accepts WebTransport sessions, which can be
 accessed via an HTTP/2 server.

2. Protocol Overview

 WebTransport servers are identified by a pair of authority value and
 path value (defined in [RFC3986] Sections 3.2 and 3.3
 correspondingly).

 When an HTTP/2 connection is established, both the client and server
 have to send a SETTINGS_ENABLE_WEBTRANSPORT setting in order to
 indicate that they both support WebTransport over HTTP/2.

Frindell, et al. Expires 26 August 2021 [Page 3]

Internet-Draft WebTransport-H2 February 2021

 WebTransport sessions are initiated inside a given HTTP/2 connection
 by the client, who sends an extended CONNECT request [RFC8441]. If
 the server accepts the request, an WebTransport session is
 established. The resulting stream will be further referred to as a
 CONNECT stream, and its stream ID is used to uniquely identify a
 given WebTransport session within the connection. The ID of the
 CONNECT stream that established a given WebTransport session will be
 further referred to as a _Session ID_.

 After the session is established, the peers can exchange data using
 the following mechanisms:

 * Both client and server can create a bidirectional or
 unidirectional stream using a new HTTP/2 extension frame
 (WT_STREAM)

 * A datagram can be sent using a new HTTP/2 extension frame
 WT_DATAGRAM.

 A WebTransport session is terminated when the CONNECT stream that
 created it is closed.

3. Session Establishment

3.1. Establishing a Transport-Capable HTTP/2 Connection

 In order to indicate support for WebTransport, both the client and
 the server MUST send a SETTINGS_ENABLE_WEBTRANSPORT value set to "1"
 in their SETTINGS frame. Endpoints MUST NOT use any WebTransport-
 related functionality unless the parameter has been negotiated.

3.2. Extended CONNECT in HTTP/2

 [RFC8441] defines an extended CONNECT method in Section 4, enabled by
 the SETTINGS_ENABLE_CONNECT_PROTOCOL parameter. An endpoint doesn
 not need to send both SETTINGS_ENABLE_CONNECT_PROTOCOL and
 SETTINGS_ENABLE_WEBTRANSPORT; the SETTINGS_ENABLE_WEBTRANSPORT
 setting implies that an endpoint supports extended CONNECT.

3.3. Creating a New Session

 As WebTransport sessions are established over HTTP/2, they are
 identified using the "https" URI scheme [RFC7230].

 In order to create a new WebTransport session, a client can send an
 HTTP CONNECT request. The ":protocol" pseudo-header field
 ([RFC8441]) MUST be set to "webtransport" (Section 7.1
 [WEBTRANSPORT-H3]). The ":scheme" field MUST be "https". Both the

Frindell, et al. Expires 26 August 2021 [Page 4]

Internet-Draft WebTransport-H2 February 2021

 ":authority" and the ":path" value MUST be set; those fields indicate
 the desired WebTransport server. An "Origin" header [RFC6454] MUST
 be provided within the request.

 Upon receiving an extended CONNECT request with a ":protocol" field
 set to "webtransport", the HTTP/2 server can check if it has a
 WebTransport server associated with the specified ":authority" and
 ":path" values. If it does not, it SHOULD reply with status code 404
 (Section 6.5.4, [RFC7231]). If it does, it MAY accept the session by
 replying with status code 200. The WebTransport server MUST verify
 the "Origin" header to ensure that the specified origin is allowed to
 access the server in question.

 From the client’s perspective, a WebTransport session is established
 when the client receives a 200 response. From the server’s
 perspective, a session is established once it sends a 200 response.
 Both endpoints MUST NOT open any streams or send any datagrams on a
 given session before that session is established.

3.4. Limiting the Number of Simultaneous Sessions

 From the flow control perspective, WebTransport sessions count
 against the stream flow control just like regular HTTP requests,
 since they are established via an HTTP CONNECT request. This
 document does not make any effort to introduce a separate flow
 control mechanism for sessions, nor to separate HTTP requests from
 WebTransport data streams. If the server needs to limit the rate of
 incoming requests, it has alternative mechanisms at its disposal:

 * "HTTP_STREAM_REFUSED" error code defined in [RFC7540] indicates to
 the receiving HTTP/2 stack that the request was not processed in
 any way.

 * HTTP status code 429 indicates that the request was rejected due
 to rate limiting [RFC6585]. Unlike the previous method, this
 signal is directly propagated to the application.

4. WebTransport Features

 WebTransport over HTTP/2 provides the following features described in
 [OVERVIEW]: unidirectional streams, bidirectional streams and
 datagrams, initiated by either endpoint.

 Session IDs are used to demultiplex streams and datagrams belonging
 to different WebTransport sessions. On the wire, session IDs are
 encoded using a 31-bit integer field.

Frindell, et al. Expires 26 August 2021 [Page 5]

Internet-Draft WebTransport-H2 February 2021

4.1. WT_STREAM Frame

 A new HTTP/2 frame called WT_STREAM is introduced for either endpoint
 to establish WebTransport streams. WT_STREAM frames can be sent on a
 stream in the "idle", "reserved (local)", "open", or "half-closed
 (remote)" state.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+
 |Pad Length? (8)|
 +-+-------------+---+
 |R| Session ID (31) |
 +-+---+
 | Padding (*) ...
 +---+

 Figure 1: WT_STREAM Frame Format

 The WT_STREAM frame define the following fields:

 Pad Length: An 8-bit field containing the length of the frame padding
 in units of octets. This field is conditional (as signified by a "?"
 in the diagram) and is only present if the PADDED flag is set.

 Session ID: An unsigned 31-bit integer that identifies the stream
 Connect Stream for this Web Transport stream. The Session ID MUST be
 MUST be an open stream negotiated via the extended CONNECT protocol
 with a ":protocol" value of "webtransport".

 The WT_STREAM frame defines the following flags:

 UNIDIRECTIONAL (0x1): When set, the stream begins in the "half-closed
 (remote)" state at the sender, and in the "half-closed (local)" state
 at the receiver.

 As with all HTTP/2 streams, WebTransport streams initiated by a
 client have odd stream IDs and those initiated by a server have even
 stream IDs.

 The recipient MUST respond with a stream error of type
 WT_STREAM_ERROR if the specified WebTransport Connect Stream does not
 exist, is not a stream established via extended CONNECT to use the
 "webtransport" protocol, or if it is in the "closed" or "half-closed
 (remote)" stream state.

Frindell, et al. Expires 26 August 2021 [Page 6]

Internet-Draft WebTransport-H2 February 2021

4.2. WT_DATAGRAM Frame

 A new HTTP/2 frame called WT_DATAGRAM is introduced for either
 endpoint to transmit a datagram. WT_DATAGRAM frames are sent with
 Stream Identifier 0.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +---------------+
 |Pad Length? (8)|
 +-+-------------+---+
 |R| Session ID (31) |
 +-+---+
 | Data (*) ...
 +---+
 | Padding (*) ...
 +---+

 Figure 2: WT_DATAGRAM Frame Format

 The WT_DATAGRAM frame define the following fields:

 Pad Length: An 8-bit field containing the length of the frame padding
 in units of octets. This field is conditional (as signified by a "?"
 in the diagram) and is only present if the PADDED flag is set.

 Session ID: An unsigned 31-bit integer that identifies the stream
 Connect Stream for this Web Transport stream. The Session ID MUST be
 MUST be an open stream negotiated via the extended CONNECT protocol
 with a ":protocol" value of "webtransport".

 Data: Application data. The amount of data is the remainder of the
 frame payload after subtracting the length of the other fields that
 are present.

 The WT_DATAGRAM frame does not define any flags.

 The recipient MAY respond with a stream error of type WT_STREAM_ERROR
 if the specified WebTransport Connect Stream does not exist, is not a
 stream established via extended CONNECT to use the "webtransport"
 protocol, or if it is in the "closed" or "half-closed (remote)"
 stream state.

 The data in WT_DATAGRAM frames is not subject to flow control. The
 receiver MAY discard this data if it does not have sufficient space
 to buffer it.

Frindell, et al. Expires 26 August 2021 [Page 7]

Internet-Draft WebTransport-H2 February 2021

 An intermediary could forward the data in a WT_DATAGRAM frame over
 another protocol, such as WebTransport over HTTP/3. In QUIC, a
 datagram frame can span at most one packet. Because of that, the
 applications have to know the maximum size of the datagram they can
 send. However, when proxying the datagrams, the hop-by-hop MTUs can
 vary.

5. Session Termination

 An WebTransport session over HTTP/2 is terminated when either
 endpoint closes the stream associated with the CONNECT request that
 initiated the session. Upon learning about the session being
 terminated, the endpoint MUST stop sending new datagrams and reset
 all of the streams associated with the session.

6. Transport Properties

 The WebTransport framework [OVERVIEW] defines a set of optional
 transport properties that clients can use to determine the presence
 of features which might allow additional optimizations beyond the
 common set of properties available via all WebTransport protocols.
 Below are details about support in Http2Transport for those
 properties.

 Stream Independence: Http2Transport does not support stream
 independence, as HTTP/2 inherently has head of line blocking.

 Partial Reliability: Http2Transport does not support partial
 reliability, as HTTP/2 retransmits any lost data. This means that
 any datagrams sent via Http2Transport will be retransmitted
 regardless of the preference of the application. The receiver is
 permitted to drop them, however, if it is unable to buffer them.

 Pooling Support: Http2Transport supports pooling, as multiple
 transports using Http2Transport may share the same underlying
 HTTP/2 connection and therefore share a congestion controller and
 other transport context.

 Connection Mobility: Http2Transport does not support connection
 mobility, unless an underlying transport protocol that supports
 multipath or migration, such as MPTCP [RFC7540], is used
 underneath HTTP/2 and TLS. Without such support, Http2Transport
 connections cannot survive network transitions.

Frindell, et al. Expires 26 August 2021 [Page 8]

Internet-Draft WebTransport-H2 February 2021

7. Security Considerations

 WebTransport over HTTP/2 satisfies all of the security requirements
 imposed by [OVERVIEW] on WebTransport protocols, thus providing a
 secure framework for client-server communication in cases when the
 client is potentially untrusted.

 WebTransport over HTTP/2 requires explicit opt-in through the use of
 HTTP SETTINGS; this avoids potential protocol confusion attacks by
 ensuring the HTTP/2 server explicitly supports it. It also requires
 the use of the Origin header, providing the server with the ability
 to deny access to Web-based clients that do not originate from a
 trusted origin.

 Just like HTTP traffic going over HTTP/2, WebTransport pools traffic
 to different origins within a single connection. Different origins
 imply different trust domains, meaning that the implementations have
 to treat each transport as potentially hostile towards others on the
 same connection. One potential attack is a resource exhaustion
 attack: since all of the transports share both congestion control and
 flow control context, a single client aggressively using up those
 resources can cause other transports to stall. The user agent thus
 SHOULD implement a fairness scheme that ensures that each transport
 within connection gets a reasonable share of controlled resources;
 this applies both to sending data and to opening new streams.

8. IANA Considerations

8.1. HTTP/2 SETTINGS Parameter Registration

 The following entry is added to the "HTTP/2 Settings" registry
 established by [RFC7540]:

 The "SETTINGS_ENABLE_WEBTRANSPORT" parameter indicates that the
 specified HTTP/2 connection is WebTransport-capable.

 Setting Name: ENABLE_WEBTRANSPORT

 Value: 0x2b603742

 Default: 0

 Specification: This document

8.2. Frame Type Registration

 The following entries are added to the "HTTP/2 Frame Type" registry
 established by [RFC7540]:

Frindell, et al. Expires 26 August 2021 [Page 9]

Internet-Draft WebTransport-H2 February 2021

 The "WT_STREAM" frame allows HTTP/2 client- and server-initiated
 unidirectional and bidirectional streams to be used by WebTransport:

 Code: 0xTBD

 Frame Type: WEBTRANSPORT_STREAM

 Specification: This document

 The "WT_DATAGRAM" frame allows HTTP/2 client and server to exchange
 datagrams used by WebTransport:

 Code: 0xTBD

 Frame Type: WEBTRANSPORT_DATAGRAM

 Specification: This document

8.3. HTTP/2 Error Code Registry

 The following entries are added to the "HTTP/2 Error Code" registry
 that was established by Section 11.2 of [RFC7540].

 Name: WT_STREAM_ERROR

 Code: 0xTBD

 Description: Invalid use of WT_STREAM frame

 Specification: _RFC Editor: Please fill in this value with the RFC
 number for this document_

8.4. Examples

 An example of negotiating a WebTransport Stream on an HTTP/2
 connection follows. This example is intended to closely follow the
 example in Section 5.1 of [RFC8441] to help illustrate the
 differences defined in this document.

Frindell, et al. Expires 26 August 2021 [Page 10]

Internet-Draft WebTransport-H2 February 2021

 [[From Client]] [[From Server]]

 SETTINGS
 SETTINGS_ENABLE_WEBTRANSPORT = 1

 SETTINGS
 SETTINGS_ENABLE_WEBTRANSPORT = 1

 HEADERS + END_HEADERS
 Stream ID = 3
 :method = CONNECT
 :protocol = webtransport
 :scheme = https
 :path = /
 :authority = server.example.com
 origin: server.example.com

 HEADERS + END_HEADERS
 Stream ID = 3
 :status = 200

 WT_STREAM
 Stream ID = 5
 Session ID = 3

 DATA
 Stream ID = 5
 WebTransport Data

 DATA + END_STREAM
 Stream ID = 5
 WebTransport Data

 DATA + END_STREAM
 Stream ID = 5
 WebTransport Data

 An example of the server initiating a WebTransport Stream follows.
 The only difference here is the endpoint that sends the first
 WT_STREAM frame.

Frindell, et al. Expires 26 August 2021 [Page 11]

Internet-Draft WebTransport-H2 February 2021

 [[From Client]] [[From Server]]

 SETTINGS
 SETTINGS_ENABLE_WEBTRANSPORT = 1

 SETTINGS
 SETTINGS_ENABLE_WEBTRANSPORT = 1

 HEADERS + END_HEADERS
 Stream ID = 3
 :method = CONNECT
 :protocol = webtransport
 :scheme = https
 :path = /
 :authority = server.example.com
 origin: server.example.com
 HEADERS + END_HEADERS
 Stream ID = 3
 :status = 200

 WT_STREAM
 Stream ID = 2
 Session ID = 3

 DATA
 Stream ID = 2
 WebTransport Data

 DATA + END_STREAM
 Stream ID = 2
 WebTransport Data

 DATA + END_STREAM
 Stream ID = 2
 WebTransport Data

9. References

9.1. Normative References

 [OVERVIEW] Vasiliev, V., "The WebTransport Protocol Framework", Work
 in Progress, Internet-Draft, draft-ietf-webtrans-overview-
 latest, <https://tools.ietf.org/html/draft-ietf-webtrans-
 overview-latest>.

Frindell, et al. Expires 26 August 2021 [Page 12]

Internet-Draft WebTransport-H2 February 2021

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/info/rfc3986>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/info/rfc6454>.

 [RFC6585] Nottingham, M. and R. Fielding, "Additional HTTP Status
 Codes", RFC 6585, DOI 10.17487/RFC6585, April 2012,
 <https://www.rfc-editor.org/info/rfc6585>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8441] McManus, P., "Bootstrapping WebSockets with HTTP/2",
 RFC 8441, DOI 10.17487/RFC8441, September 2018,
 <https://www.rfc-editor.org/info/rfc8441>.

 [WEBTRANSPORT-H3]
 Vasiliev, V., "WebTransport over HTTP/3", Work in
 Progress, Internet-Draft, draft-ietf-webtrans-
 http3-latest, <https://tools.ietf.org/html/draft-ietf-
 webtrans-http3-latest>.

9.2. Informative References

Frindell, et al. Expires 26 August 2021 [Page 13]

Internet-Draft WebTransport-H2 February 2021

 [RFC6202] Loreto, S., Saint-Andre, P., Salsano, S., and G. Wilkins,
 "Known Issues and Best Practices for the Use of Long
 Polling and Streaming in Bidirectional HTTP", RFC 6202,
 DOI 10.17487/RFC6202, April 2011,
 <https://www.rfc-editor.org/info/rfc6202>.

Acknowledgments

 Thanks to Anthony Chivetta, Joshua Otto, and Valentin Pistol for
 their contributions in the design and implementation of this work.

Authors’ Addresses

 Alan Frindell
 Facebook Inc.

 Email: afrind@fb.com

 Eric Kinnear
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America

 Email: ekinnear@apple.com

 Tommy Pauly
 Apple Inc.
 One Apple Park Way
 Cupertino, California 95014,
 United States of America

 Email: tpauly@apple.com

 Victor Vasiliev
 Google

 Email: vasilvv@google.com

 Guowu Xie
 Facebook Inc.

 Email: woo@fb.com

Frindell, et al. Expires 26 August 2021 [Page 14]

