5G – Ultra-Reliable Wireless Technology with Low Latency

János Farkas, Torsten Dudda, Alexey Shapin, and Sara Sandberg janos.farkas@ericsson.com, torsten.dudda@ericsson.com, alexey.shapin@ericsson.com, sara.sandberg@ericsson.com

J. Farkas, T. Dudda, A. Shapin, S. Sandberg | 2020-03-24 | 5G - Ultra-Reliable Wireless Technology with Low Latency | Page 2

- 5G URLLC use cases & overview
- 5G NR low-latency features
- 5G NR reliability features
- 5G multi-connectivity features
- Integration of 5G and TSN
- 5G and DetNet combinations

— Summary

Industrial Use Cases and Requirements

Use case (high level)		Availability	Cycle time	Typical payload size	# of devices	Typical service area
Motion control	Printing machine	>99.9999%	< 2 ms	20 bytes	>100	100 m x 100 m x 30 m
	Machine tool	>99.9999%	< 0.5 ms	50 bytes	~20	15 m x 15 m x 3 m
	Packaging machine	>99.9999%	< 1 ms	40 bytes	~50	10 m x 5 m x 3 m
Mobile robots	Cooperative motion control	>99.9999%	1 ms	40-250 bytes	100	< 1 km²
	Video-operated remote control	>99.9999%	10 – 100 ms	15 – 150 kbytes	100	< 1 km²
Mobile control panels with safety functions	Assembly robots or milling machines	>99.9999%	4-8 ms	40-250 bytes	4	10 m x 10 m
	Mobile cranes	>99.9999%	12 ms	40-250 bytes	2	40 m x 60 m
Process automation (process monitoring)		>99.99%	> 50 ms	Varies	10000 devices per km²	

Source: <u>5G-ACIA: White Paper, "5G for Connected Industries and Automation," Feb. 2019</u>

5G URLLC Overview

5G NR – Scheduled Wireless Access

Dynamic DL & UL resource assignments

- gNB schedules radio resources according to availability and QoS
- primarily licensed spectrum

Admission control

 QoS of existing users ensured by admission control of further users

5G

Quality of Service (QoS)

- QoS flows established through core and radio network
- Packet delay budget, priority, packet error rate

5G NR – Low-latency Features

Applicable to both IP and Ethernet PDU sessions

5G NR – Reliability Features

Applicable to both IP and Ethernet PDU sessions

Robust control and data channels

- Extra-robust modulation and coding schemes
- Robust control channel design
- Channel state reporting and centralized link adaptation

Multi-antenna techniques

 Exploit diversity and increased channel quality of multiple antennas at transmitter and receiver

Multi-connectivity

- Multiple duplicate transmissions on different carriers
- More on next slide ...

5G – Multi-connectivity Features

Applicable to both IP and Ethernet PDU sessions

Dual Connectivity Dual UEs in the Device Device **Device** ((Q)) ((Q)) Γx/Rx IPF1 Tx/Rx ١E gNB1 PREOF/ PREOF/ UF FRER FRER Tx/Rx UPF2 Tx/Rx JF gNB2

- Full redundancy of UE and network
- Network user plane _____ redundancy

Redundant over-the-air transmissions

- 5G is ready for DetNet service protection:
 - PREOF: Packet Replication, Elimination, and Ordering Functions, see RFC 8655 DetNet Architecture
- FRER: Frame Replication and Elimination for Reliability, see IEEE Std 802.1CB

J. Farkas, T. Dudda, A. Shapin, S. Sandberg | 2020-03-24 | 5G - Ultra-Reliable Wireless Technology with Low Latency | Page 8

RAN internal: PDCP duplication

UE

PDCP

L2low

Carrier 2

gNB

PDCP

L2lov

_2low

5G as Virtual Bridge for TSN Integration

J. Farkas, T. Dudda, A. Shapin, S. Sandberg | 2020-03-24 | 5G - Ultra-Reliable Wireless Technology with Low Latency | Page 9

5G Matches Deterministic Wireline Networking

5G and DetNet Combination Examples

a) TSN was considered as first sub-network technology candidate for DetNet, but more to come ...

<u>I-D.ietf-detnet-ip-over-tsn</u> <u>I-D.ietf-detnet-mpls-over-tsn</u>

b) 5G acting as a sub-network for DetNet

c) 5G & TSN sub-networks for DetNet

Summary

— 5G provides centrally controlled scheduled wireless segments with high reliability and availability

- Dynamic and pre-scheduled DL & UL resource assignment
- Admission control to ensure QoS
- 5G provides QoS guarantees for latency and reliability
 - latency below 1ms with reliability up to 99.999%
- 5G contains several features to achieve ultra-reliable and low latency performance, e.g.,:
 - support for different OFDM numerologies and slot-durations
 - fast processing capabilities
 - redundancy techniques
- 5G includes features to support Industrial IoT
- 5G supports integration with TSN
 - Reliability equally applicable to DetNet
- 5G is DetNet ready

Thank you!

Q&A

J. Farkas, T. Dudda, A. Shapin, S. Sandberg | 2020-03-24 | 5G - Ultra-Reliable Wireless Technology with Low Latency | Page 13