CoRE Working Group C. Amsiss

Internet-Draft

Intended status: Standards Track M. Tiloca

Expires: 13 July 2024 RISE AB
10 January 2024

Cacheable OSCORE
draft-amsuess—-core-cachable-oscore-08

Abstract

Group communication with the Constrained Application Protocol (CoAP)
can be secured end-to-end using Group Object Security for Constrained
RESTful Environments (Group OSCORE), also across untrusted
intermediary proxies. However, this sidesteps the proxies’ abilities
to cache responses from the origin server(s). This specification
restores cacheability of protected responses at proxies, by
introducing consensus requests which any client in a group can send
to one server or multiple servers in the same group.

Discussion Venues
This note is to be removed before publishing as an RFC.
Discussion of this document takes place on the CORE Working Group
mailing list (core@ietf.org), which is archived at

https://mailarchive.ietf.org/arch/browse/core/.

Source for this draft and an issue tracker can be found at
https://gitlab.com/chrysn/core-cachable-oscore/.

Status of This Memo

This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It 1s inappropriate to use Internet-Drafts as reference

material or to cite them other than as "work in progress."

This Internet-Draft will expire on 13 July 2024.

Amsiliss & Tiloca Expires 13 July 2024 [Page 1]

Internet-Draft Cacheable OSCORE

Copyright Notice

January 2024

Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust’s Legal

Provisions Relating to IETF Documents
license-info)
Please review these documents carefully,
and restrictions with respect to this document.

(https://trustee.ietf.org/

in effect on the date of publication of this document.
as they describe your rights
Code Components

extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction
1.1. Use Cases
1.2. Terminology
2. OSCORE processing w1thout source authentlcatlon
3. Deterministic Requests
3.1. Deterministic Unprotected Request
3.2. Design Considerations
3.3. Request-Hash
3.4. Use of Deterministic Requests
3.4.1. Preconditions
3.4.2. Client Processing of Determlnlstlc Requests
3.4.3. Server Processing of Deterministic Requests
3.4.4. Response to a Deterministic Request
3.4.5. Deterministic Requests to Multiple Servers
4. Obtaining Information about the Deterministic Client
5. Security Considerations

6. IANA Considerations

6.1. CoAP Option Numbers Reglstry .

6.2. OSCORE Security Context Parameters Reglstry
7. References ...

7.1. Normative References

7.2. Informative References

Appendix A. Change log
Appendix B. Padding

B.1.
B.2.

Definition of the Paddlng Optlon
Using and processing the Padding optlon

Appendix C. Simple Cacheability using Ticket Requests

Appendix D.

Multicast Notifications

Appendix E. Open questions .
Appendix F. Unsorted further 1deas
Acknowledgments

Amsiliss & Tiloca Expires 13 July 2024

O JdJJo U bW

11
12
13
15
17
18
19
20
21
21
22
22
23
25
27
27
28
28

Application for More Efficient End-to-End Protected

30
30
31
31

[Page 2]

Internet-Draft Cacheable OSCORE January 2024

Authors’ Addresses . . . ¢ v v v 4 e e e e e e e e e e e e e e .32
1. Introduction

The Constrained Application Protocol (CoAP) [RFC7252] supports also
group communication, for instance over UDP and IP multicast
[I-D.ietf-core—-groupcomm-bis]. In a group communication environment,
exchanged messages can be secured end-to-end by using Group Object
Security for Constrained RESTful Environments (Group OSCORE)
[I-D.ietf-core-oscore—-groupcomm] .

Requests and responses protected with the group mode of Group OSCORE
can be read by all group members, i.e., not only by the intended
recipient (s), thus achieving group-level confidentiality.

This allows a trusted intermediary proxy which is also a member of
the OSCORE group to populate its cache with responses from origin
servers. Later on, the proxy can possibly reply to a request in the
group with a response from its cache, if recognized as an eligible
server by the client.

However, an untrusted proxy which is not member of the OSCORE group
only sees protected responses as opaque, uncacheable ciphertext. 1In
particular, different clients in the group that originate a same
plain CoAP request would send different protected requests, as a
result of their Group OSCORE processing. Such protected requests
cannot yield a cache hit at the proxy, which makes the whole caching
of protected responses pointless.

This document addresses this complication and enables cacheability of
protected responses, also for proxies that are not members of the
OSCORE group and are unaware of OSCORE in general. To this end, it
builds on the concept of "consensus request" initially considered in
[I-D.ietf-core-observe-multicast—-notifications], and defines
"Deterministic Request" as a convenient incarnation of such concept.

All clients wishing to send a particular GET or FETCH request are
able to deterministically compute the same protected request, using a
variation on the pairwise mode of Group OSCORE. It follows that
cache hits become possible at the proxy, which can thus serve clients
in the group from its cache. Like in
[I-D.ietf-core-observe-multicast-notifications], this requires that
clients and servers are already members of a suitable OSCORE group.

Cacheability of protected responses is useful also in applications
where several clients wish to retrieve the same object from a single
server. Some security properties of OSCORE are dispensed with, in
order to gain other desirable properties.

Amsiliss & Tiloca Expires 13 July 2024 [Page 3]

Internet-Draft Cacheable OSCORE January 2024

In order to clearly handle the protocol’s security properties, and to
broaden applicability to group situations outside the deterministic
case, the technical implementation is split into two halves:

* maintaining request-response bindings in the absence of request
source authentication; and

* Dbuilding and processing of Deterministic Requests (which have no
source authentication, and thus require the former).

1.1. Use Cases

When firmware updates are delivered using CoAP, many similar devices
fetch the same large data at the same time. Collecting such large
data at a proxy from its cache not only keeps the traffic low, but
also lets the clients ride single file to hide their numbers
[SW-EPIV] and identities. By using protected Deterministic Requests
as defined in this document, it is possible to efficiently perform
data collection at a proxy also when the firmware updates are
protected end-to-end.

When relying on intermediaries to fan out the delivery of multicast
data protected end-to-end as in
[I-D.ietf-core-observe-multicast-notifications], the use of protected
Deterministic Requests as defined in this document allows for a more
efficient setup, by reducing the amount of message exchanges and
enabling early population of cache entries (see Appendix D).

When relying on Information-Centric Networking (ICN) for multiparty
dissemination of cacheable content, CoAP and CoAP proxies can be used
to enable asynchronous group communication. This leverages CoAP
proxies performing request aggregation, as well as response
replication and cacheability [ICN-paper]. By restoring cacheability
of OSCORE-protected responses, the Deterministic Requests defined in
this document make it possible to attain dissemination of cacheable
content in ICN-based deployments, also when the content is protected
end-to—-end.

When DNS messages are transported over CoAP
[I-D.ietf-core-dns-over-coap], it is recommended to use OSCORE for
protecting such messages. By restoring cacheability of OSCORE-
protected responses, it becomes possible to benefit from the cache
retrieval of such CoAP responses that particularly transport DNS
messages.

Amsiliss & Tiloca Expires 13 July 2024 [Page 4]

Internet-Draft Cacheable OSCORE January 2024

1.2. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.

Readers are expected to be familiar with terms and concepts of CoAP
[RFC7252] and its method FETCH [RFC8132], group communication for
CoAP [I-D.ietf-core-groupcomm-bis], COSE [RFC9052] [RFC9053], OSCORE
[REFC8613], and Group OSCORE [I-D.ietf-core-oscore—-groupcomm].

This document also introduces the following new terms.

* Consensus Request: a CoAP request that multiple clients use to
repeatedly access a particular resource. In this document, it
exclusively refers to requests protected with Group OSCORE to a
resource hosted at one or more servers in the OSCORE group.

A Consensus Request has all the properties relevant to caching,
but its transport dependent properties (e.g., Token or Message ID)
are not defined. Thus, different requests on the wire can be said
to "be the same Consensus Request" even if they have different
Tokens or source addresses.

The Consensus Request is the reference for request-response

binding. In general, a client processing a response to a
Consensus Request did not generate (and thus sign) the consensus
request. The client not only needs to decrypt the Consensus

Request to understand a response to it (for example to tell which
path was requested), but it also needs to verify that this is the
only Consensus Request that could elicit this response.

* Deterministic Client: a fictitious member of an OSCORE group,
having no Sender Sequence Number, no asymmetric key pair, and no
Recipient Context.

The Group Manager sets up the Deterministic Client, and assigns it
a unique Sender ID as for other group members. Furthermore, the
Deterministic Client has only the minimum common set of privileges
shared by all group members.

* Deterministic Request: a Consensus Request generated by the

Deterministic Client. The use of Deterministic Requests is
defined in Section 3.

Amsiliss & Tiloca Expires 13 July 2024 [Page 5]

Internet-Draft Cacheable OSCORE January 2024

* Ticket Request: a Consensus Request generated by the server
itself.

This term is not used in the main document, but is useful in
comparison with other applications of Consensus Requests that are
generated in a different way than as Deterministic Requests. The
prototypical Ticket Request is the Phantom Request defined in
[I-D.ietf-core-observe-multicast-notifications].

In Appendix C, the term is used to bridge the gap with that
document.

2. OSCORE processing without source authentication

The request-response binding of OSCORE is achieved by the items
request_kid / request_piv (and, in group OSCORE, request_kid_context)
that are present in both the request’s and the response’s AAD, and
are hereafter referred to as "request_ details".

The security of such binding depends on the server obtaining source
authentication for the request: if this precondition is not
fulfilled, a malicious group member could alter a request to the
server (without altering the request_ details above), and the client
would still accept the response as if it were a response to its
request.

Source authentication is thus a precondition for the secure use of
OSCORE and Group OSCORE. However, it is hard to provide when:

* Requests are built exclusively using shared keying material, like
in the case of a Deterministic Client.

* Requests are sent without source authentication, or their source
authentication is not checked. (This was part of
[I-D.ietf-core-oscore-groupcomm] in revisions before version -12)

This document does not [yet?] give full guidance on how to restore
request-response binding for the general case, but currently only
offers suggestions:

* The response can contain the full request. An option that allows
doing that is presented in [I-D.bormann-core-responses].

* The response can contain a cryptographic hash of the full request.

This is used by the method specified in this document, as defined
in Section 3.3.

Amsiliss & Tiloca Expires 13 July 2024 [Page 6]

Internet-Draft Cacheable OSCORE January 2024

* The request_ details above can be transported in a Class E option
(encrypted and integrity protected) or a Class I option
(unencrypted, but part of the AAD hence integrity protected). The
latter has the advantage that the option can be removed in transit
and reconstructed at the receiver.

* Alternatively, the agreed-on request data can be placed in a
different position in the AAD, or take part to the derivation of
the OSCORE Security Context. In the latter case, care needs to be
taken to never initialize a Security Context twice with the same
input, as that would lead to reuse of the AEAD nonce.

[Suggestion for any OSCORE v2: avoid request_ details in the
request’s AAD as individual elements. Rather than having
"request_kid’, ’'request_piv’ (and, in Group OSCORE,
"request_kid_context’) as separate fields, they can better be
something more pluggable. This would avoid the need to make up an
option before processing, and would allow just plugging in the hash
or request in there as replacing the elements for the request_
details.]

Additional care has to be taken in ensuring that request_ details
that are not expressed in the request itself are captured. For
instance, these include an indication of the Security Context from
which the request is assumed to have been originated.

Requests without source authentication have to be processed assuming

only the minimal possible privilege of the requester [which is
currently described as the authorization of the Deterministic Client,
and may be moved up here in later versions of this document]. If a

response is built to such a request and contains data more sensitive
than that (which might be justified if the response is protected for
an authorized group member in pairwise mode), special consideration
for any side channels like response size or timing is required.

3. Deterministic Requests
This section defines a method for clients starting from a same plain
CoAP request to independently build the same, corresponding
Deterministic Request protected with Group OSCORE.

3.1. Deterministic Unprotected Request
Clients build the unprotected Deterministic Request in a way which is
as much reproducible as possible. This document does not set out

full guidelines for minimizing the variation, but considered starting
points are:

Amsiliss & Tiloca Expires 13 July 2024 [Page 7]

Internet-Draft Cacheable OSCORE January 2024

Set the inner Observe option to 0 even if no observation is
intended (and hence no outer Observe is set). Thus, both
observing and non-observing requests can be aggregated into a
single request, which is upstreamed as an observation at the
latest when any observing request reaches a caching proxy.

In this case, following a Deterministic Request that includes only
an inner Observe option, servers include an inner Observe option
(but no outer Observe option) in a successful response sent as
reply. Also, when receiving a response to such a Deterministic
Request previously sent, clients have to silently ignore the inner
Observe option in that response.

Avoid setting the ETag option in requests on a whim. Only set it
when there was a recent response with that ETag. When obtaining
later blocks, do not send the known-stale ETag.

In block-wise transfers, maximally sized large inner blocks
(szx=6) should be selected. This serves not only to align the
clients on consistent cache entries, but also helps amortize the
additional data transferred in the per-message signatures.

Outer block-wise transfer can then be used if these messages exceed a
hop’s efficiently usable MTIU size.

(If BERT [RFC8323] is usable with OSCORE, its use is fine as well; in
that case, the server picks a consistent block size for all clients
anyway) .

*

The Padding option defined in Appendix B can be used to limit an
adversary’s ability to deduce the content and the target resource
of Deterministic Requests from their length. In particular, all
Deterministic Requests of the same class (ideally, all requests to
a particular server) can be padded to reach the same total length,
that should be agreed on among all users of the same OSCORE
Security Context.

Clients should not send any inner Echo options [RFC9175] in
Deterministic Requests.

This limits the use of the Echo option in combination with
Deterministic Requests to unprotected (outer) options, and thus is
limited to testing the reachability of the client. This is not
practically limiting, as the use as an inner option would be to
prove freshness, which is something Deterministic Requests simply
cannot provide anyway.

Amsiliss & Tiloca Expires 13 July 2024 [Page 8]

Internet-Draft Cacheable OSCORE January 2024

These only serve to ensure that cache entries are utilized; failure
to follow them has no more severe consequences than decreasing the
utility and effectiveness of a cache.

3.2. Design Considerations

The hard part is determining a consensus pair (key, nonce) to be used
with the AEAD cipher for encrypting the plain CoAP request and
obtaining the Deterministic Request as a result, while also avoiding
the reuse of the same (key, nonce) pair across different requests.

Diversity can conceptually be enforced by applying a cryptographic
hash function to the complete input of the encryption operation over
the plain CoAP request (i.e., the AAD and the plaintext of the COSE
object), and then using the result as source of uniqueness. Any non-
malleable cryptographically secure hash of sufficient length to make
collisions sufficiently unlikely is suitable for this purpose.

A tempting possibility is to use a fixed (group) key, and use the
hash as a deterministic AEAD nonce for each Deterministic Request
through the Partial IV component (see Section 5.2 of [RFC8613]).
However, the 40 bit available for the Partial IV are by far
insufficient to ensure that the deterministic nonce is not reused
across different Deterministic Requests. Even if the full
deterministic AEAD nonce could be set, the sizes used by common
algorithms would still be too small.

As a consequence, the proposed method takes the opposite approach, by
considering a fixed deterministic AEAD nonce, while deriving a
different deterministic encryption key for each Deterministic
Request. That is, the hash computed over the plain CoAP request is
taken as input to the key derivation. As an advantage, this approach
does not require to transport the computed hash in the OSCORE option.

[Note: This has a further positive side effect arising with version
—-11 of Group OSCORE. That is, since the full encoded OSCORE option
is part of the AAD, it avoids a circular dependency from feeding the
AAD into the hash computation, which in turn needs crude workarounds
like building the full AAD twice, or zeroing out the hash-to-be.]

3.3. Request-Hash
In order to transport the hash of the plain CoAP request, a new CoOAP

option is defined, which MUST be supported by clients and servers
that support Deterministic Requests.

Amsiliss & Tiloca Expires 13 July 2024 [Page 9]

Internet-Draft Cacheable OSCORE January 2024

The option is called Request-Hash. As summarized in Figure 1, the
Request—-Hash option is elective, safe to forward, part of the cache
key, and repeatable.

e e e e o +
| No. | c | U | N | R Name | Format | Length | Default |
S s e T e o o +
| TBD1 | | | | x | Request-Hash | opaque | any | (none) |
e e - — . o +

Figure 1: Request-Hash Option

The Request-Hash option is identical in all its properties to the
Request-Tag option defined in [RFC9175], with the following
exceptions:

* It may be arbitrarily long.

Implementations can limit its length to that of the longest output
of the supported hash functions.

* It may be present in responses (TBD: Does this affect any other
properties?).

A response’s Request-Hash option is, as a matter of default value,
equal to the request’s Request-Hash option. The response is only
valid if the value of its Request-Hash option is equal to the
value of the Request-Hash option in the corresponding request.

Servers (including proxies) thus generally SHOULD NOT need to
include the Request-Hash option explicitly in responses,
especially as a matter of bandwidth efficiency.

A reason (and, currently, the only known) to actually include a
Request-Hash option in a response is the possible use of non-
traditional responses as described in
[I-D.bormann-core-responses], which in terms of that document are
non-matching to the request (and thus easily usable). The
Request-Hash option in the response allows populating caches (see
below) and enables the decryption of a response sent as a reply to
a Consensus Request. In the context of non-traditional responses,
the Request-Hash value of the request corresponding to a response
can be inferred from the value of the Request-Hash option in the
response.

* A proxy MAY use any fresh cached response from the selected server

to respond to a request with the same Request-Hash; this may save
it some memory.

Amsiliss & Tiloca Expires 13 July 2024 [Page 10]

Internet-Draft Cacheable OSCORE January 2024

A proxy can add or remove the request’s Request-Tag value to /
from a response.

* When used with a Deterministic Request, this option is created at
message protection time by the sender, and used before message
unprotection by the recipient. Therefore, in this use case, it is
treated as Class U for OSCORE [RFC8613] in requests. In the same
application, for responses, it is treated as Class I, and often
elided from sending (but reconstructed at the receiver). Other
uses of this option can put it into different classes for the
OSCORE processing.

This option achieves request-response binding described in Section 2.
3.4. Use of Deterministic Requests

This section defines how a Deterministic Request is built on the
client side and then processed on the server side.

3.4.1. Preconditions

The use of Deterministic Requests in an OSCORE group requires that
the interested group members are aware of the Deterministic Client in
the group. In particular, they need to know:

* The Sender ID of the Deterministic Client, to be used as ’kid’
parameter for the Deterministic Requests. This allows all group
members to compute the Sender Key of the Deterministic Client.

The Sender ID of the Deterministic Client is immutable throughout
the lifetime of the OSCORE group. That is, it is not relinquished
and it does not change upon changes of the group keying material
following a group rekeying performed by the Group Manager.

* The hash algorithm to use for computing the hash of a plain CoAP
request, when producing the associated Deterministic Request.

Group members have to obtain this information from the Group Manager.
A group member can do that, for instance, when obtaining the group
keying material upon joining the OSCORE group, or later on as an
active member by sending a request to a dedicated resource at the
Group Manager.

The joining process based on the Group Manager defined in
[I-D.ietf-ace-key—-groupcomm-oscore] can be easily extended to support
the provisioning of information about the Deterministic Client. Such
an extension is defined in Section 4 of this document.

Amsiliss & Tiloca Expires 13 July 2024 [Page 11]

Internet-Draft Cacheable OSCORE January 2024

3.4.2. Client Processing of Deterministic Requests

In order to build a Deterministic Request, the client protects the
plain CoAP request using the pairwise mode of Group OSCORE (see
Section 9 of [I-D.ietf-core-oscore—-groupcomm]), with the following
alterations.

1. When preparing the OSCORE option, the external_aad, and the AEAD
nonce:

* The used Sender ID is the Deterministic Client’s Sender ID.
* The used Partial IV is O.

When preparing the external_ aad, the element ’'sender_cred’ in the
aad_array takes the empty CBOR byte string.

2. The client uses the hash function indicated for the Deterministic
Client, and computes a hash H over the following input: the
Sender Key of the Deterministic Client, concatenated with the
binary serialization of the aad_array from step 1, concatenated
with the COSE plaintext.

Note that the payload of the plain CoAP request (if any) is not
self-delimiting, and thus hash functions are limited to non-
malleable ones.

3. The client derives the deterministic Pairwise Sender Key K as
defined in Section 2.5.1 of [I-D.ietf-core-oscore—-groupcomm],
with the following differences:

* The Sender Key of the Deterministic Client is used as first
argument of the HKDF.

* The hash H from step 2 is used as second argument of the HKDF,
i.e., as a pseudo IKM-Sender computable by all the group
members.

Note that an actual IKM-Sender cannot be obtained, since there
is no authentication credential (and public key included
therein) associated with the Deterministic Client, to be used
as Sender Authentication Credential and for computing an
actual Diffie-Hellman Shared Secret.

* The Sender ID of the Deterministic Client is used as value for

the ’'id’ element of the ’"info’ parameter used as third
argument of the HKDF.

Amsiliss & Tiloca Expires 13 July 2024 [Page 12]

Internet-Draft Cacheable OSCORE January 2024

4. The client includes a Request-Hash option in the request to
protect, with value set to the hash H from Step 2.

5. The client MAY include an inner Observe option set to 0 to be
protected with OSCORE, even if no observation is intended (see
Section 3.1).

6. The client protects the request using the pairwise mode of Group
OSCORE as defined in Section 9.3 of
[I-D.ietf-core-oscore—-groupcomm], using the AEAD nonce from step
1, the deterministic Pairwise Sender Key K from step 3 as AEAD
encryption key, and the finalized AAD.

7. The client MUST NOT include an unprotected (outer) Observe option
if no observation is intended, even in case an inner Observe
option was included at step 5.

8. The client MUST set FETCH as the outer code of the protected
request to make it usable for a proxy’s cache, even if no
observation is intended [RFC7641].

The result is the Deterministic Request to be sent.

Since the encryption key K is derived using material from the whole
plain CoAP request, this (key, nonce) pair is only used for this very
message, which is deterministically encrypted unless there is a hash
collision between two Deterministic Requests.

The deterministic encryption requires the used AEAD algorithm to be
deterministic in itself. This is the case for all the AEAD
algorithms currently registered with COSE in [COSE.Algorithms]. For
future algorithms, a flag in the COSE registry is to be added.

Note that, while the process defined above is based on the pairwise
mode of Group OSCORE, no information about the server takes part to
the key derivation or is included in the AAD. This is intentional,
since it allows for sending a Deterministic Request to multiple
servers at once (see Section 3.4.5). On the other hand, it requires
later checks at the client when verifying a response to a
Deterministic Request (see Section 3.4.4).

3.4.3. Server Processing of Deterministic Requests

Upon receiving a Deterministic Request, a server performs the
following actions.

Amsiliss & Tiloca Expires 13 July 2024 [Page 13]

Internet-Draft Cacheable OSCORE January 2024

A server that does not support Deterministic Requests would not be
able to create the necessary Recipient Context, and thus will fail
decrypting the request.

1. If not already available, the server retrieves the information
about the Deterministic Client from the Group Manager, and
derives the Sender Key of the Deterministic Client.

2. The server actually recognizes the request to be a Deterministic
Request, due to the presence of the Request-Hash option and to
the 'kid’ parameter of the OSCORE option set to the Sender ID of
the Deterministic Client.

If the "kid’ parameter of the OSCORE option specifies a different
Sender ID than the one of the Deterministic Client, the server
MUST NOT take the following steps, and instead processes the
request as per Section 9.4 of [I-D.ietf-core-oscore-groupcomm].

3. The server retrieves the hash H from the Request-Hash option.
4. The server derives a Recipient Context for processing the
Deterministic Request. In particular:

* The Recipient ID is the Sender ID of the Deterministic Client.

* The Recipient Key is derived as the key K in step 3 of
Section 3.4.2, with the hash H retrieved at the previous step.

5. The server verifies the request using the pairwise mode of Group
OSCORE, as defined in Section 9.4 of
[I-D.ietf-core-oscore—-groupcomm], using the Recipient Context
from step 4, with the difference that the server does not perform
replay checks against a Replay Window (see below).

In case of successful verification, the server MUST also perform the
following actions, before possibly delivering the request to the
application.

* Starting from the recovered plain CoAP request, the server MUST
recompute the same hash that the client computed at step 2 of
Section 3.4.2.

If the recomputed hash value differs from the value retrieved from
the Request-Hash option at step 3, the server MUST treat the
request as invalid and MAY reply with an unprotected 4.00 (Bad
Request) error response. The server MAY set an Outer Max—-Age
option with wvalue zero. The diagnostic payload MAY contain the
string "Decryption failed".

Amsiliss & Tiloca Expires 13 July 2024 [Page 14]

Internet-Draft Cacheable OSCORE January 2024

This prevents an attacker that guessed a valid authentication tag
for a given Request-Hash value to poison caches with incorrect
responses.

* The server MUST verify that the unprotected request is safe to be
processed in the REST sense, i.e., that it has no side effects.
If verification fails, the server MUST discard the message and
SHOULD reply with a protected 4.01 (Unauthorized) error response.

Note that some CoAP implementations may not be able to prevent
that an application produces side effects from a safe request.
This may incur checking whether the particular resource handler is
explicitly marked as eligible for processing Deterministic
Requests. An implementation may also have a configured list of
requests that are known to be side effect free, or even a pre-
built list of valid hashes for all sensible requests for them, and
reject any other request.

These checks replace the otherwise present requirement that the
server needs to check the Replay Window of the Recipient Context
(see step 5 above), which is inapplicable with the Recipient
Context derived at step 4 from the value of the Request-Hash
option. The reasoning is analogous to the one in
[I-D.amsuess—-1lwig-oscore] to treat the potential replay as
answerable, i1f the handled request is side effect free.

3.4.4. Response to a Deterministic Request

When preparing a response to a Deterministic Request, the server
treats the Request-Hash option as a Class I option. The value of the
Request-Hash option MUST be equal to the value of the Request-Hash
option that was specified in the corresponding Deterministic Request.
Since the client is aware of the Request-Hash value to expect in the
response, the server usually elides the Request-Hash option from the
actually transmitted response.

Treating the Request-Hash option as a Class I option creates the
request-response binding, thus ensuring that no mismatched responses
can be successfully unprotected and verified by the client (see
Section 2).

The client MUST reject a response to a Deterministic Request, if the
Request-Hash value of the response is not equal to the value that was

specified in the Request-Hash option of that Deterministic Request.

When preparing the response, the server performs the following
actions.

Amsiliss & Tiloca Expires 13 July 2024 [Page 15]

Internet-Draft Cacheable OSCORE January 2024

1. The server sets a non-zero Max-Age option, thus making the
Deterministic Request usable for the proxy cache.

2. The server preliminarily sets the Request-Hash option with the
full Request-Hash value, i.e., the same value of the Request-Hash
option that was specified in the Deterministic Request.

3. If the Deterministic Request included an inner Observe option but
not an outer Observe option, the server MUST include an inner
Observe option in the response.

4. The server MUST protect the response using the group mode of
Group OSCORE, as defined in Section 8.3 of
[I-D.ietf-core-oscore-groupcomm]. This is required to ensure

that the client can verify the source authentication of the
response, since the "pairwise" key used for producing the
Deterministic Request is actually shared among all the group
members.

Note that the Request-Hash option is treated as Class I here.

5. The server MUST use its own Sender Sequence Number as Partial IV
to protect the response, and include it as Partial IV in the
OSCORE option of the response. This is required since the server
does not perform replay protection on the Deterministic Request
(see Section 3.4.4).

6. The server uses 2.05 (Content) as outer code even though the
response i1s not necessarily an Observe notification [RFC7641], in
order to make the response cacheable.

7. The server SHOULD remove the Request-Hash option from the
response before sending the response to the client, as per the
general option mechanism defined in Section 3.3.

8. If the Deterministic Request included an inner Observe option but
not an outer Observe option, the server MUST NOT include an outer
Observe option in the response.

Upon receiving the response, the client performs the following
actions.

1. In case the response includes a ’'kid’ in the OSCORE option, the
client MUST verify it to be exactly the ’'kid’ of the server to
which the Deterministic Request was sent, unless responses from
multiple servers are expected (see Section 3.4.5).

Amsiliss & Tiloca Expires 13 July 2024 [Page 16]

Internet-Draft Cacheable OSCORE January 2024

2. 1In case the response does not include the Request-Hash option,
the client adds the Request-Hash option to the response, setting
its value to the same value of the Request-Hash option that was
specified in the Deterministic Request.

Otherwise, the client MUST reject the response if the value of
the Request-Hash option is different from the value of the
Request—-Hash option that was specified in the Deterministic

Request.

3. The client verifies the response using the group mode of Group
OSCORE, as defined in Section 8.4 of
[I-D.ietf-core-oscore-groupcomm]. In particular, the client

verifies the countersignature in the response, based on the ’'kid’
of the server it sent the request to. When verifying the
response, the Request-Hash option is treated as a Class I option.

4. TIf the Deterministic Request included an inner Observe option but
not an outer Observe option (see Section 3.1), the client MUST
silently ignore the inner Observe option in the response, which
MUST NOT result in stopping the processing of the response.

[Note: This deviates from Section 4.1.3.5.2 of RFC 8613, but it is
limited to a very specific situation, where the client and server
both know exactly what happens. This does not affect the use of
OSCORE in other situations.]

3.4.5. Deterministic Requests to Multiple Servers

A Deterministic Request _can_ be sent to a CoAP group, e.g., over UDP
and IP multicast [I-D.ietf-core—-groupcomm-bis], thus targeting
multiple servers at once.

To simplify key derivation, such a Deterministic Request is still
created in the same way as a one-to-one request and still protected
with the pairwise mode of Group OSCORE, as defined in Section 3.4.2.

Note that this deviates from Section 8 of
[I-D.ietf-core-oscore-groupcomm], since the Deterministic Request in
this case is indeed intended to multiple recipients, but yet it is
protected with the pairwise mode. However, this is limited to a very
specific situation, where the client and servers both know exactly
what happens. This does not affect the use of Group OSCORE in other
situations.

Amsiliss & Tiloca Expires 13 July 2024 [Page 17]

Internet-Draft Cacheable OSCORE January 2024

[Note: If it was protected with the group mode, the request hash
would need to be fed into a group key derivation just for this corner
case. Furthermore, there would need to be a signature in spite of no
authentication credential (and public key included therein)
associated with the Deterministic Client.]

When a server receives a request from the Deterministic Client as
addressed to a CoAP group, the server proceeds as defined in
Section 3.4.3, with the difference that it MUST include its own
Sender ID in the response, as ’"kid’ parameter of the OSCORE option.

Although it is normally optional for the server to include its Sender
ID when replying to a request protected in pairwise mode, it is
required in this case for allowing the client to retrieve the
Recipient Context associated with the server originating the
response.

If a server is member of a CoAP group, and it fails to successfully
decrypt and verify an incoming Deterministic Request, then it is
RECOMMENDED for that server to not send back any error message, in
case the server asserts that the Deterministic Request was sent to
the CoAP group (e.g., to the associated IP multicast address) or in
case the server is not able to assert that altogether.

4. Obtaining Information about the Deterministic Client

This section extends the Joining Process defined in
[I-D.ietf-ace-key—-groupcomm-oscore], and based on the ACE framework
for Authentication and Authorization [RFC9200]. Upon joining the
OSCORE group, this enables a new group member to obtain from the
Group Manager the required information about the Deterministic Client
(see Section 3.4.1).

With reference to the ’'key’ parameter included in the Join Response
defined in Section 6.3 of [I-D.ietf-ace-key-groupcomm-oscore], the
Group_OSCORE_Input_Material object specified as its wvalue contains
also the two additional parameters ’‘det_senderId’ and ’‘det_hash_alg’.
These are defined in Section 6.2 of this document. 1In particular:

* The ’'det_senderId’ parameter, if present, has as value the OSCORE
Sender ID assigned to the Deterministic Client by the Group
Manager. This parameter MUST be present if the OSCORE group uses
Deterministic Requests as defined in this document. Otherwise,
this parameter MUST NOT be present.

* The ’'det_hash_alg’ parameter, if present, has as value the hash

algorithm to use for computing the hash of a plain CoAP request,
when producing the associated Deterministic Request. This

Amsiliss & Tiloca Expires 13 July 2024 [Page 18]

Internet-Draft Cacheable OSCORE January 2024

parameter takes values from the "Value" column of the "COSE
Algorithms" Registry [COSE.Algorithms]. This parameter MUST be
present if the OSCORE group uses Deterministic Requests as defined
in this document. Otherwise, this parameter MUST NOT be present.

The same extension above applies also to the ’'key’ parameter included
in a Key Distribution Response (see Sections 9.1.1 and 9.1.2 of
[I-D.ietf-ace-key—-groupcomm-oscore]) .

With reference to the ’'key’ parameter included in a Signature
Verification Data Response defined in Section 9.6 of
[I-D.ietf-ace-key—-groupcomm-oscore], the Group_OSCORE_Input_Material
object specified as its wvalue contains also the ’'det_senderId’
parameter defined above.

5. Security Considerations

The same security considerations from [RFC7252][I-D.ietf-core—-groupco
mm-bis] [RFC8613] [I-D.ietf-core-oscore-groupcomm] hold for this
document.

The following elaborates on how, compared to Group OSCORE,
Deterministic Requests dispense with some of the OSCORE security
properties, by just so much as to make caching possible.

* A Deterministic Request is intrinsically designed to be replayed,
as intended to be identically sent multiple times by multiple
clients to the same server(s).

Consistently, as per the processing defined in Section 3.4.3, a
server receiving a Deterministic Request does not perform replay
checks against an OSCORE Replay Window.

This builds on the following considerations.

- For a given request, the level of tolerance to replay risk is
specific to the resource it operates upon (and therefore only
known to the origin server). In general, if processing a
request does not have state-changing side effects, the
consequences of replay are not significant.

Just like for what concerns the lack of source authentication
(see below), the server must verify that the received
Deterministic Request (more precisely, its handler) is side
effect free. The distinct semantics of the CoAP request codes
can help the server make that assessment.

Amsiliss & Tiloca Expires 13 July 2024 [Page 19]

Internet-Draft Cacheable OSCORE January 2024

— Consistently with the point above, a server can choose whether
it will process a Deterministic Request on a per-resource
basis. It is RECOMMENDED that origin servers allow resources
to explicitly configure whether Deterministic Requests are
appropriate to receive, as still limited to requests that are
safe to be processed in the REST sense, i.e., they do not have
state-changing side effects.

* Receiving a response to a Deterministic Request does not mean that
the response was generated after the Deterministic Request was

sent.

However, a valid response to a Deterministic Request still
contains two freshness statements.

— It is more recent than any other response from the same group
member that has a smaller sequence number.

— It is more recent than the original creation of the
deterministic keying material in the Group OSCORE Security
Context.

* Source authentication of Deterministic Requests is lost.

Instead, the server must verify that the Deterministic Request

(more precisely, its handler) is side effect free. The distinct
semantics of the CoAP request codes can help the server make that
assessment.

Just like for what concerns the acceptance of replayed
Deterministic Requests (see above), the server can choose whether
it will process a Deterministic Request on a per-resource basis.

* The privacy of Deterministic Requests is limited.
An intermediary can determine that two Deterministic Requests from
different clients are identical, and associate the different
responses generated for them. A server producing responses of
varying size to a Deterministic Request can use the Padding option
to hide when the response is changing.

[More on the verification of the Deterministic Request]

6. IANA Considerations

Note to RFC Editor: Please replace "[RFC-XXXX]" with the RFC number
of this document and delete this paragraph.

Amsiliss & Tiloca Expires 13 July 2024 [Page 20]

Internet-Draft Cacheable OSCORE January 2024

This document has the following actions for IANA.
6.1. CoAP Option Numbers Registry
IANA is asked to enter the following option numbers to the "CoAP

Option Numbers" registry within the "Constrained RESTful Environments
(CoRE) Parameters" registry group.

Fo——— o o +
| Number | Name | Reference |
o o o +
| TBD1 | Request-Hash | [RFC-XXXX] |
Fmm R Fom +
| TBD2 | Padding | [RFC-XXXX] |
Fo——— o o +

Figure 2: CoAP Option Numbers
[
For the Request-Hash option, the number suggested to IANA is 548.

For the Padding option, the option number is picked to be the highest
number in the Experts Review range; the high option number allows it
to follow practically all other options, and thus to be set when the
final unpadded message length including all options is known.
Therefore, the number suggested to IANA is 64988.

Applications that make use of the "Experimental use" range and want
to preserve that property are invited to pick the largest suitable
experimental number (65532)

Note that unless other high options are used, this means that padding
a message adds an overhead of at least 3 bytes, i.e., 1 byte for
option delta/length and two more bytes of extended option delta.

This i1s considered acceptable overhead, given that the application
has already chosen to prefer the privacy gains of padding over wire
transfer length.

]

6.2. OSCORE Security Context Parameters Registry
IANA is asked to register the following entries in the "OSCORE
Security Context Parameters" registry within the "Authentication and

Authorization for Constrained Environments (ACE)" registry group.

* Name: det_senderId

Amsiliss & Tiloca Expires 13 July 2024 [Page 21]

Internet-Draft Cacheable OSCORE January 2024

* CBOR Label: TBD3
* CBOR Type: bstr
* Registry: -

* Description: OSCORE Sender ID assigned to the Deterministic Client
of an OSCORE group

* Reference: [RFC-XXXX] (Section 4)

* Name: det_hash_alg

* CBOR Label: TBD4

* CBOR Type: int / tstr
* Registry: -

* Description: Hash algorithm to use in an OSCORE group when
producing a Deterministic Request

* Reference: [RFC-XXXX] (Section 4)
7. References
7.1. Normative References

[COSE.Algorithms]
IANA, "COSE Algorithms",
<https://www.iana.org/assignments/cose/
cose.xhtml#algorithms>.

[I-D.ietf-core—-groupcomm-bis]
Dijk, E., Wang, C., and M. Tiloca, "Group Communication
for the Constrained Application Protocol (CoAP)", Work in
Progress, Internet-Draft, draft-ietf-core-groupcomm-bis-—
10, 23 October 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-core—
groupcomm-bis—-10>.

Amsiliss & Tiloca Expires 13 July 2024 [Page 22]

Internet-Draft Cacheable OSCORE January 2024

[I-D.ietf-core-oscore—-groupcomm]
Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,
and J. Park, "Group Object Security for Constrained
RESTful Environments (Group OSCORE)", Work in Progress,
Internet-Draft, draft-ietf-core-oscore-groupcomm-20, 2
September 2023, <https://datatracker.ietf.org/doc/html/
draft-ietf-core-oscore-groupcomm—-20>.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/rfc/rfc2119>.

[RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
Application Protocol (CoAP)", RFC 7252,
DOI 10.17487/RFC7252, June 2014,
<https://www.rfc-editor.org/rfc/rfc7252>.

[RFC8132] wvan der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
FETCH Methods for the Constrained Application Protocol
(CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
<https://www.rfc-editor.org/rfc/rfc8132>.

[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

[RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
"Object Security for Constrained RESTful Environments
(OSCORE) ", RFC 8613, DOI 10.17487/RFC8613, July 2019,
<https://www.rfc-editor.org/rfc/rfc8613>.

[RFC9052] Schaad, J., "CBOR Object Signing and Encryption (COSE):
Structures and Process", STD 96, RFC 9052,
DOI 10.17487/RFC9052, August 2022,
<https://www.rfc-editor.org/rfc/rfc9052>.

[REFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE):
Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053,
August 2022, <https://www.rfc-editor.org/rfc/rfc9053>.

7.2. Informative References

[I-D.amsuess—-1lwig-oscore]
Amsiliss, C., "OSCORE Implementation Guidance", Work in
Progress, Internet-Draft, draft-amsuess-lwig-oscore-00, 29
April 2020, <https://datatracker.ietf.org/doc/html/draft—
amsuess—lwig-oscore-00>.

Amsiliss & Tiloca Expires 13 July 2024 [Page 23]

Internet-Draft Cacheable OSCORE January 2024

[I-D.bormann—-core-responses]
Bormann, C. and C. Amsiliss, "CoAP: Non-traditional response
forms", Work in Progress, Internet-Draft, draft-bormann-
core-responses—-01, 3 February 2022,
<https://datatracker.ietf.org/doc/html/draft-bormann—-core—
responses—-01>.

[I-D.ietf-ace-key-groupcomm-oscore]
Tiloca, M., Park, J., and F. Palombini, "Key Management
for OSCORE Groups in ACE", Work in Progress, Internet-—
Draft, draft-ietf-ace-key—-groupcomm-oscore-16, 6 March
2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
ace-key—-groupcomm-oscore—-16>.

[I-D.ietf-core-dns-over-coap]
Lenders, M. S., Amsiiss, C., Glindoan, C., Schmidt, T. C.,
and M. Wahlisch, "DNS over CoAP (DoC)", Work in Progress,
Internet-Draft, draft-ietf-core-dns-over-coap-05, 17
November 2023, <https://datatracker.ietf.org/doc/html/
draft-ietf-core-dns-over—-coap-05>.

[I-D.ietf-core-observe—-multicast—-notifications]
Tiloca, M., H®6glund, R., Amsiiss, C., and F. Palombini,
"Observe Notifications as CoAP Multicast Responses", Work
in Progress, Internet-Draft, draft-ietf-core-observe-
multicast—-notifications-07, 23 October 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-core-
observe-multicast-notifications-07>.

[ICN-paper]
Gliindoan, C., Amsiss, C., Schmidt, T. C., and M. W&hlisch,
"Group Communication with OSCORE: RESTful Multiparty
Access to a Data-Centric Web of Things", October 2021,
<https://ieeexplore.ieee.org/document/9525000>.

[REC7641] Hartke, K., "Observing Resources in the Constrained
Application Protocol (CoAP)", RFC 7641,
DOI 10.17487/RFC7641, September 2015,
<https://www.rfc-editor.org/rfc/rfc7641>.

[RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
Application Protocol) over TCP, TLS, and WebSockets",
RFC 8323, DOI 10.17487/RFC8323, February 2018,
<https://www.rfc-editor.org/rfc/rfc8323>.

Amsiliss & Tiloca Expires 13 July 2024 [Page 24]

Internet-Draft Cacheable OSCORE January 2024

[RFC9175] Amstiliss, C., Preud Mattsson, J., and G. Selander,
"Constrained Application Protocol (CoAP): Echo, Request-
Tag, and Token Processing", RFC 9175,

DOI 10.17487/RFC9175, February 2022,
<https://www.rfc-editor.org/rfc/rfc9175>.

[REFC9200] Seitz, L., Selander, G., Wahlstroem, E., Erdtman, S., and
H. Tschofenig, "Authentication and Authorization for
Constrained Environments Using the OAuth 2.0 Framework
(ACE-OAuth)", RFC 9200, DOI 10.17487/RFC9200, August 2022,
<https://www.rfc-editor.org/rfc/rfc9200>.

[SW-EPIV] Lucas, G., "Star Wars", Lucasfilm Ltd. , 1977.

Appendix A. Change log

Since -07:

* Use of "Consensus Request" instead of "Deterministic Request" in
one sentence.

* Added DNS over CoAP as possible use case.

* The computation of the Request Hash takes as input the aad_array
(i.e., not the external_aad).

* Corrected parameter name ’'sender_cred’.

* Simplified parameter provisioning to the external signature
verifier.

Since -06:

* Clarifications, terminology alignment, and editorial improvements.
Since -05:

* Updated references.

Since -04:

* Revised and extended list of use cases.

* Added further note on Deterministic Requests to a group of servers
as still protected with the pairwise mode.

* Suppression of error responses for servers in a CoAP group.

Amsiliss & Tiloca Expires 13 July 2024 [Page 25]

Internet-Draft Cacheable OSCORE January 2024

* Extended security considerations with discussion on replayed
requests.

Since -03:

* Processing steps in case only inner Observe is included.

* Clarified preserving/eliding the Request-Hash option in responses.

* Clarified limited use of the Echo option.

* Clarifications on using the Padding option.

Since -02:

* Separate parts needed to respond to unauthenticated requests from
the remaining deterministic response part. (Currently this is
mainly an addition; the document will undergo further refactoring
if that split proves helpful).

* Inner Observe is set unconditionally in Deterministic Requests.

* Clarifications around padding and security considerations.

Since -01:

* Not meddling with request_kid any more.

Instead, Request-Hash in responses is treated as Class I, but
typically elided.

In requests, this removes the need to compute the external_ aad
twice.

* Derivation of the hash now uses the external_aad, rather than the
full AAD. This is good enough because AAD is a function only of
the external_aad, and the external_aad is easier to get your hands
on if COSE manages all the rest.

* The Sender ID of the Deterministic Client is immutable throughout
the group lifetime. Hence, no need for any related expiration/
creation time and mechanisms to perform its update in the group.

* Extension to the ACE Group Manager of ace-key-groupcomm-oscore to
provide required info about the Deterministic Client to new group

members when joining the group.

* Alignment with changes in core-oscore-groupcomm-12.

Amsiliss & Tiloca Expires 13 July 2024 [Page 26]

Internet-Draft Cacheable OSCORE January 2024

* Editorial improvements.
Since -00:

* More precise specification of the hashing (guided by first
implementations)

* Focus shifted to Deterministic Requests (where it should have been
in the first place; all the build-up of Token Requests was moved
to a motivating appendix)

* Aligned with draft-tiloca-core-observe-responses-multicast-05 (not
submitted at the time of submission)

* List the security properties lost compared to OSCORE
Appendix B. Padding

As discussed in Section 5, information can be leaked by the length of
a response or, in different contexts, of a request.

In order to hide such information and mitigate the impact on privacy,
the new CoAP option with name Padding is defined, in order to allow
increasing a message’s length without changing its meaning.

The option can be used with any CoAP transport, but is especially
useful with OSCORE as that does not provide any padding of its own.

Before choosing to pad a message by using the Padding option,
application designers should consider whether they can arrange for
common message variants to have the same length by picking a suitable
content representation; the canonical example here is expressing
"yes" and "no" with "y" and "n", respectively.

B.1. Definition of the Padding Option

As summarized in Figure 3, the Padding option is elective, safe to
forward and not part of the cache key; these follow from the usage
instructions. The option may be repeated, as that may be the only
way to achieve a certain total length for the padded message.

F———— L s B e F—————— F—————— Fom +
| No. | ¢ | U | N | R | Name | Format | Length | Default |
t————— L B e e Fm—————— Fm—————— Fm——————— +
| TBD2 | | | x | x | Padding | opaque | any | (none) |
e s S e Fm———— Fm———— Fmm———— +

Figure 3: Padding Option

Amsiliss & Tiloca Expires 13 July 2024 [Page 27]

Internet-Draft Cacheable OSCORE January 2024

When used with OSCORE, the Padding option is of Class E, which makes
it indistinguishable from other Class E options or the payload to
third parties.

B.2. Using and processing the Padding option

When a server produces different responses of different length for a

given class of requests but wishes to produce responses of consistent
length (typically to hide the variation from anyone but the intended

recipient), the server can pick a length that all possible responses

can be padded to, and set the Padding option with a suitable all-zero
option value in all responses to that class of requests.

Likewise, a client can decide on a class of requests that it pads to
reach a consistent length. This has considerably less efficacy and
applicability when applied to Deterministic Requests. That is: an
external observer can group together different requests even if they
are of the same length; and padding would hinder convergence on a
single Consensus Request, thus requiring all users of the same Group
OSCORE Security Context to agree on the same total length in advance.

Any party receiving a Padding option MUST ignore it. In particular,

a server MUST NOT make its choice of padding a response dependent on

any padding present in the corresponding request. A means driven by

the client for coordinating response padding is out of scope for this
document.

Proxies that see a Padding option MAY discard it.
Appendix C. Simple Cacheability using Ticket Requests

Building on the concept of Phantom Requests and Informative Responses
defined in [I-D.ietf-core-observe-multicast—-notifications], basic
caching is already possible without building a Deterministic Request.

The approach discussed in this appendix is not provided for
application. 1In fact, it is efficient only when dealing with very
large representations and no OSCORE inner Block-Wise mode (which is
inefficient for other reasons), or when dealing with observe
notifications (which are already well covered in
[I-D.ietf-core-observe—-multicast—-notifications]).

Rather, it is more provided as a "mental exercise" for the authors

and interested readers to bridge the gap between this document and
[I-D.ietf-core-observe-multicast-notifications].

Amsiliss & Tiloca Expires 13 July 2024 [Page 28]

Internet-Draft Cacheable OSCORE January 2024

That is, instead of replying to a client with a regular response, a
server can send an Informative Response, defined as a protected 5.03
(Service Unavailable) error message. The payload of the Informative
Response contains the Phantom Request, which is a Ticket Request in
the broader terminology used by this document.

Unlike a Deterministic Request, a Phantom Request is protected with
the Group Mode of Group OSCORE. Instead of verifying a hash, the
client can see from the countersignature that this was indeed the

request the server is answering. The client also verifies that the
request URI is identical between the original request and the Ticket
Request.

The remaining exchange largely plays out like in
[I-D.ietf-core-observe-multicast-notifications]’s "Example with a
Proxy and Group OSCORE": The client sends the Phantom Request to the
proxy (but, lacking a tp_info, without a Listen-To-Multicast-
Responses option), which forwards it to the server for lack of the
option.

The server then produces a regular response and includes a non-zero

Max—-Age option as an outer CoAP option. Note that there is no point
in including an inner Max-Age option, as the client could not pin it
in time.

When a second, different client later asks for the same resource at
the same server, its new request uses a different ’"kid’ and ’Partial
IV’ than the first client’s. Thus, the new request produces a cache
miss at the proxy and is forwarded to the server, which responds with
the same Ticket Request provided to the first client. After that,
when the second client sends the Ticket Request, a cache hit at the
proxy will be produced, and the Ticket Request can be served from the
proxy’s cache.

When multiple proxies are in use, or the response has expired from
the proxy’s cache, the server receives the Ticket Request multiple
times. It is a matter of perspective whether the server treats that
as an acceptable replay (given that this whole mechanism only makes
sense on requests free of side effects), or whether it is
conceptualized as having an internal proxy where the request produces
a cache hit.

Amsiliss & Tiloca Expires 13 July 2024 [Page 29]

Internet-Draft Cacheable OSCORE January 2024

Appendix D. Application for More Efficient End-to-End Protected
Multicast Notifications

[I-D.ietf-core-observe—-multicast—-notifications] defines how a CoAP
server can serve all clients observing a same resource at once, by
sending notifications over multicast. The approach supports the
possible presence of intermediaries such as proxies, also if Group
OSCORE is used to protect notifications end-to-end.

However, comparing the "Example with a Proxy" in Appendix E of
[I-D.ietf-core-observe-multicast-notifications] and the "Example with
a Proxy and Group OSCORE" in Appendix F of
[I-D.ietf-core-observe-multicast-notifications] shows that, when
using Group OSCORE, more requests need to hit the server. This is
because every client originally protects its Observation request
individually, and thus needs a custom response served to obtain the
Phantom Request as a Ticket Request.

If the clients send their requests as the same Deterministic Request,
then the server can use these requests as Ticket Requests as well.
Thus, there is no need for the server to provide a same Phantom
Request to each client.

Instead, the server can send a single, unprotected Informative
Response - very much like in the example without Group OSCORE - hence
setting the proxy up and optionally providing also the latest
notification along the way.

The proxy can thus be configured by the server following the first
request from the clients, after which it has an active observation
and a fresh cache entry in time for the second client to arrive.

Appendix E. Open questions

* Is "deterministic encryption" something worthwhile to consider in
COSE?

COSE would probably specify something more elaborate for the KDF
(the current KDF round is the pairwise mode’s; COSE would probably
run through KDF with a KDF context structure).

COSE would give a header parameter name to the Request-Hash (which
for the purpose of OSCORE Deterministic Requests would put back
into Request-Hash by extending the option compression function
across the two options).

Conceptually, they should align well, and the implementation
changes are likely limited to how the KDF is run.

Amsiliss & Tiloca Expires 13 July 2024 [Page 30]

Internet-Draft Cacheable OSCORE January 2024

* An unprotection failure from a mismatched hash will not be part of
the ideally constant-time code paths that otherwise lead to AEAD
unprotect failures. Is that a problem?

After all, it does tell the attacker that they did succeed in
producing a valid MAC (it’s just not doing it any good, because
this key is only used for Deterministic Requests and thus also
needs to pass the Request-Hash check).

Appendix F. Unsorted further ideas

* All or none of the Deterministic Requests should have an inner
observe option. Preferably none -- that makes messages shorter,
and clients need to ignore that option either way when checking
whether a Consensus Request matches their intended request.

* We could allows clients to elide all other options than Request-
Hash, and elide the payload, if it has reason to believe that it
can produce a cache hit with the abbreviated request alone.

This may prove troublesome in terms of cache invalidation (the
server would have to use short-lived responses to indicate that it
does need the full request, or we’d need special handling for
error responses, or criteria by which proxies don’t even forward
these if they don’t have a response at hand).

That may be more trouble than it’s worth without a strong use case
(say, of complex but converging FETCH requests).

Hashes could also be used in truncated form for that.
Acknowledgments

The authors sincerely thank Michael Richardson, Jim Schaad, and G&ran
Selander for their comments and feedback.

The work on this document has been partly supported by VINNOVA and
the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-Home
(Grant agreement 952652).

Authors’ Addresses
Christian Amsiiss

Austria
Email: christian@amsuess.com

Amsiliss & Tiloca Expires 13 July 2024 [Page 31]

Internet-Draft Cacheable OSCORE January 2024

Marco Tiloca

RISE AB

Isafjordsgatan 22
SE-16440 Stockholm Kista
Sweden

Email: marco.tiloca@ri.se

Amsiliss & Tiloca Expires 13 July 2024 [Page 32]

