
CoRE Working Group M. Tiloca
Internet-Draft RISE AB
Updates: 7252 (if approved) E. Dijk
Intended status: Standards Track IoTconsultancy.nl
Expires: 3 March 2024 31 August 2023

 Proxy Operations for CoAP Group Communication
 draft-tiloca-core-groupcomm-proxy-09

Abstract

 This document specifies the operations performed by a proxy, when
 using the Constrained Application Protocol (CoAP) in group
 communication scenarios. Such a proxy processes a single request
 sent by a client over unicast, and distributes the request over IP
 multicast to a group of servers. Then, the proxy collects the
 individual responses from those servers and relays those responses
 back to the client, in a way that allows the client to distinguish
 the responses and their origin servers through embedded addressing
 information. This document updates RFC7252 with respect to caching
 of response messages at proxies.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the Constrained RESTful
 Environments Working Group mailing list (core@ietf.org), which is
 archived at https://mailarchive.ietf.org/arch/browse/core/.

 Source for this draft and an issue tracker can be found at
 https://gitlab.com/crimson84/draft-tiloca-core-groupcomm-proxy.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Tiloca & Dijk Expires 3 March 2024 [Page 1]

Internet-Draft Proxy Operations for Group Communication August 2023

 This Internet-Draft will expire on 3 March 2024.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 4
 1.1. Terminology . 5
 2. The Multicast-Timeout Option 5
 3. The Response-Forwarding Option 6
 3.1. Encoding of Server Address 8
 3.2. Default Values of the Server Port Number 9
 4. Requirements and Objectives 10
 5. Protocol Description . 11
 5.1. Request Sending at the Client 11
 5.1.1. Request Sending 11
 5.1.2. Supporting Observe 12
 5.2. Request Processing at the Proxy 13
 5.2.1. Request Processing 13
 5.2.2. Supporting Observe 14
 5.3. Request and Response Processing at the Server 14
 5.3.1. Request and Response Processing 14
 5.3.2. Supporting Observe 14
 5.4. Response Processing at the Proxy 14
 5.4.1. Response Processing 15
 5.4.2. Supporting Observe 15
 5.5. Response Processing at the Client 16
 5.5.1. Response Processing 16
 5.5.2. Supporting Observe 18
 5.6. Example . 18
 6. Reverse-Proxies . 20
 6.1. Processing on the Client Side 20
 6.2. Processing on the Proxy Side 20
 7. Caching . 22
 7.1. Freshness Model . 23
 7.2. Validation Model . 25

Tiloca & Dijk Expires 3 March 2024 [Page 2]

Internet-Draft Proxy Operations for Group Communication August 2023

 7.2.1. Proxy-Servers Revalidation with Unicast Requests . . 25
 7.2.2. Proxy-Servers Revalidation with Group Requests . . . 26
 7.3. Client-Proxy Revalidation with Group Requests 27
 7.4. Caching of End-To-End Protected Responses at Proxies . . 29
 7.4.1. Deterministic Requests to Achieve Cacheability . . . 29
 7.4.2. Validation of Responses 30
 8. Chain of Proxies . 31
 8.1. Request Processing at the Proxy 31
 8.1.1. Supporting Observe 33
 8.2. Response Processing at the Proxy 33
 8.2.1. Supporting Observe 34
 9. HTTP-CoAP Proxies . 35
 9.1. The HTTP Multicast-Timeout Header Field 35
 9.2. The HTTP Response-Forwarding Header Field 36
 9.3. The HTTP Group-ETag Header Field 37
 9.4. Request Sending at the Client 37
 9.5. Request Processing at the Proxy 38
 9.6. Response Processing at the Proxy 38
 9.7. Response Processing at the Client 39
 9.8. Example . 40
 9.9. Streamed Delivery of Responses to the Client 41
 9.10. Reverse-Proxies . 42
 9.10.1. Processing on the Client Side 42
 9.10.2. Processing on the Proxy Side 42
 10. Security Considerations 42
 10.1. Client Authentication 43
 10.2. Multicast-Timeout Option 43
 10.3. Response-Forwarding Option 44
 10.4. Group-ETag Option 45
 10.5. HTTP-to-CoAP Proxies 46
 11. IANA Considerations . 46
 11.1. CoAP Option Numbers Registry 46
 11.2. CoAP Transport Information Registry 47
 11.3. Header Field Registrations 47
 12. References . 48
 12.1. Normative References 48
 12.2. Informative References 50
 Appendix A. Examples with Reverse-Proxy 51
 A.1. Example 1 . 52
 A.2. Example 2 . 55
 A.3. Example 3 . 57
 Acknowledgments . 59
 Authors’ Addresses . 59

Tiloca & Dijk Expires 3 March 2024 [Page 3]

Internet-Draft Proxy Operations for Group Communication August 2023

1. Introduction

 The Constrained Application Protocol (CoAP) [RFC7252] allows the
 presence of proxies, as intermediary entities supporting clients by
 performing requests on their behalf and relaying back responses.

 CoAP supports also group communication over IP multicast
 [I-D.ietf-core-groupcomm-bis], where a group request can be addressed
 to multiple recipient servers, each of which may reply with an
 individual unicast response. As discussed in Section 3.5 of
 [I-D.ietf-core-groupcomm-bis], this group communication scenario
 poses a number of issues and limitations to proxy operations.

 In particular, the client sends to the proxy a single unicast
 request, which the proxy forwards to a group of servers over IP
 multicast. Later on, the proxy replies to the client’s original
 unicast request, by relaying back the responses from the servers.

 As per [RFC7252], a CoAP-to-CoAP proxy relays those responses to the
 client as separate CoAP messages, all matching (by Token) with the
 client’s original unicast request. A possible alternative approach
 for aggregating those responses into a single CoAP response sent to
 the client would require a specific aggregation content-format, which
 is not available yet. Both these approaches have open issues.

 This document considers the former approach. That is, after
 forwarding a CoAP group request from the client to the group of CoAP
 servers, the proxy relays the individual responses back to the client
 as separate CoAP messages. The described method addresses all the
 related issues raised in Section 3.5 of
 [I-D.ietf-core-groupcomm-bis]. To this end, a dedicated signaling
 protocol is defined, using two new CoAP options.

 Using this protocol, the client explicitly confirms its intent to
 perform a proxied group request and its support for receiving
 multiple responses as a result, i.e., one or more from each origin
 server. Also, the client signals for how long it is willing to wait
 for responses. When relaying to the client a response to the group
 request, the proxy indicates the addressing information of the origin
 server. This enables the client to distinguish, multiple diffent
 responses by origin and to possibly contact one or more of the
 respective servers by sending individual unicast request(s) to the
 indicated address(es). In doing these follow-up unicast requests,
 the client may optionally bypass the proxy.

Tiloca & Dijk Expires 3 March 2024 [Page 4]

Internet-Draft Proxy Operations for Group Communication August 2023

 This document also defines how the proposed protocol is used between
 an HTTP client and an HTTP-CoAP cross-proxy, in order to forward an
 HTTP group request from the client to a group of CoAP servers, and
 relay back the individual CoAP responses as HTTP responses.

 Finally, this document defines a caching model for proxies and
 specifies how they can serve a group request by using cached
 responses. Therefore, this document updates [RFC7252].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Readers are expected to be familiar with terms and concepts defined
 in CoAP [RFC7252], Group Communication for CoAP
 [I-D.ietf-core-groupcomm-bis], CBOR [RFC8949], OSCORE [RFC8613] and
 Group OSCORE [I-D.ietf-core-oscore-groupcomm].

 Unless specified otherwise, the term "proxy" refers to a CoAP-to-CoAP
 forward-proxy, as defined in Section 5.7.2 of [RFC7252].

2. The Multicast-Timeout Option

 The Multicast-Timeout Option defined in this section has the
 properties summarized in Figure 1, which extends Table 4 of
 [RFC7252].

 Since the option is not Safe-to-Forward, the column "N" indicates a
 dash for "not applicable". The value of the Multicast-Timeout Option
 specifies a timeout value in seconds, encoded as an unsigned integer
 (see Section 3.2 of [RFC7252]).

 +------+---+---+---+---+------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +------+---+---+---+---+------------+--------+--------+---------+
 | | | | | | | | | |
 | TBD1 | | x | - | | Multicast- | uint | 0-4 | (none) |
 | | | | | | Timeout | | | |
 | | | | | | | | | |
 +------+---+---+---+---+------------+--------+--------+---------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 1: The Multicast-Timeout Option.

Tiloca & Dijk Expires 3 March 2024 [Page 5]

Internet-Draft Proxy Operations for Group Communication August 2023

 This document specifically defines how this option is used by a
 client in a CoAP request, to indicate to a proxy its support for and
 interest in receiving multiple responses to a proxied CoAP group
 request, i.e., one or more from each origin server, and for how long
 it is willing to wait for receiving responses via that proxy (see
 Section 5.1.1 and Section 5.2.1).

 When sending a CoAP group request to a proxy via IP unicast, to be
 forwarded by the proxy to a targeted group of servers, the client
 includes the Multicast-Timeout Option into the request. The option
 value indicates after how much time in seconds the client will stop
 accepting responses matching its original unicast request, with the
 exception of notifications if the CoAP Observe Option [RFC7641] is
 used in the same request. This allows the proxy to stop relaying
 responses back to the client, if those are received from servers
 after the indicated amount of time has elapsed.

 The Multicast-Timeout Option is of class U in terms of OSCORE
 processing (see Section 4.1 of [RFC8613]).

3. The Response-Forwarding Option

 The Response-Forwarding Option defined in this section has the
 properties summarized in Figure 2, which extends Table 4 of
 [RFC7252]. The option is intended only for inclusion in CoAP
 responses, and builds on the Base-Uri option from Section 3 of
 [I-D.bormann-coap-misc].

 Since the option is intended only for responses, the column "N"
 indicates a dash for "not applicable".

 +------+---+---+---+---+------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +------+---+---+---+---+------------+--------+--------+---------+
 | | | | | | | | | |
 | TBD2 | | | - | | Response- | (*) | 10-25 | (none) |
 | | | | | | Forwarding | | | |
 | | | | | | | | | |
 +------+---+---+---+---+------------+--------+--------+---------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 (*) See below.

 Figure 2: The Response-Forwarding Option.

 This document specifically defines how this option is used by a proxy
 that can perform proxied CoAP group requests.

Tiloca & Dijk Expires 3 March 2024 [Page 6]

Internet-Draft Proxy Operations for Group Communication August 2023

 Upon receiving a response to such request from a server, the proxy
 includes the Response-Forwarding Option into the response sent to the
 origin client (see Section 5). The proxy uses the option to indicate
 the addressing information where the client can send an individual
 request intended to that origin server.

 In particular, the client can use the addressing information
 specified in the option to identify the response originator and
 possibly send it individual requests later on, either directly, or
 indirectly via the proxy, as unicast requests.

 The option value is set to the byte serialization of the CBOR array
 ’tp_info’ defined in Section 4.2.1 of
 [I-D.ietf-core-observe-multicast-notifications], including only the
 set of elements ’srv_addr’. In turn, the set includes the integer
 ’tp_id’ identifying the used transport protocol, and further elements
 whose number, format and encoding depend on the value of ’tp_id’.

 The value of ’tp_id’ MUST be taken from the "Value" column of the
 "CoAP Transport Information" registry defined in Section 16.5 of
 [I-D.ietf-core-observe-multicast-notifications]. The elements of
 ’srv_addr’ following ’tp_id’ are specified in the corresponding entry
 of the Registry, under the "Server Addr" column.

 If the server is reachable through CoAP transported over UDP, the
 ’tp_info’ array includes the following elements, encoded as defined
 in Section 4.2.1.1 of
 [I-D.ietf-core-observe-multicast-notifications].

 * ’tp_id’: the CBOR integer with value 1. This element MUST be
 present.

 * ’srv_host’: a CBOR byte string, encoding the unicast IP address of
 the server. This element is tagged and identified by the CBOR tag
 260 "Network Address (IPv4 or IPv6 or MAC Address)". This element
 MUST be present.

 * ’srv_port’: a CBOR unsigned integer or the CBOR simple value
 "null" (0xf6). This element MAY be present.

 If present as a CBOR unsigned integer, it has as value the
 destination UDP port number to use for individual requests to the
 server.

 If present as the CBOR simple value "null" (0xf6), the client MUST
 assume that the same port number specified in the group URI of the
 original unicast CoAP group request sent to the proxy (see
 Section 5.1.1) can be used for individual requests to the server.

Tiloca & Dijk Expires 3 March 2024 [Page 7]

Internet-Draft Proxy Operations for Group Communication August 2023

 If not present, the client MUST assume that the default port
 number 5683 defined in [RFC7252] can be used as the destination
 UDP port number for individual requests to the server.

 The CDDL notation [RFC8610] provided below describes the ’tp_info’
 CBOR array using the format defined above.

 tp_info = [
 tp_id : 1, ; UDP as transport protocol
 srv_host : #6.260(bstr), ; IP address where to reach the server
 ? srv_port : uint / null ; Port number where to reach the server
]

 At present, ’tp_id’ is expected to take only value 1 (UDP) when using
 forward proxies, UDP being the only currently available transport for
 CoAP to work over IP multicast. While additional multicast-friendly
 transports may be defined in the future, other current tranport
 protocols can still be useful in applications relying on a reverse-
 proxy (see Section 6).

 The rest of this section considers the new values of ’tp_id’
 registered by this document (see Section 11.2), and specifies:

 * The encoding for the elements of ’tp_info’ following ’tp_id’ (see
 Section 3.1).

 * The port number assumed by the client if the element ’srv_port’ of
 ’tp_info’ is not present (see Section 3.2).

 The Response-Forwarding Option is of class U in terms of OSCORE
 processing (see Section 4.1 of [RFC8613]).

3.1. Encoding of Server Address

 This document defines some values used as transport protocol
 identifiers, whose respective new entries are included in the "CoAP
 Transport Information" registry defined in Section 16.5 of
 [I-D.ietf-core-observe-multicast-notifications].

 For each of these values, the following table summarizes the elements
 specified under the "Srv Addr" and "Req Info" columns of the
 registry, together with their CBOR encoding and short description.

 While not listed here for brevity, the element ’tp_id’ is always
 present as a CBOR integer in the element set "Srv Addr".

Tiloca & Dijk Expires 3 March 2024 [Page 8]

Internet-Draft Proxy Operations for Group Communication August 2023

 +----------+-------------+----------+--------------+---------------+
 | ’tp_id’ | Element Set | Element | CBOR Type | Description |
 | Values | | | | |
 +----------+-------------+----------+--------------+---------------+
 | 2, 3, 4, | Srv Addr | srv_host | #6.260(bstr) | Address of |
 | 5, 6 | | | (*) | the server |
 | | +----------+--------------+---------------+
 | | | srv_port | uint / null | Port number |
 | | | | | of the server |
 | +-------------+----------+--------------+---------------+
 | | Req Info | cli_host | #6.260(bstr) | Address of |
 | | | | (*) | the client |
 | | +----------+--------------+---------------+
 | | | cli_port | uint | Port number |
 | | | | | of the client |
 +----------+-------------+----------+--------------+---------------+

 * The CBOR byte string is tagged and identified by the
 CBOR tag 260 "Network Address (IPv4 or IPv6 or MAC Address)".

3.2. Default Values of the Server Port Number

 If the ’srv_port’ element of the ’tp_info’ array is not present, the
 client MUST assume the following value as port number where to send
 individual requests intended to the server, based on the value of
 ’tp_id’.

 * If ’tp_id’ is equal to 1, i.e., CoAP over UDP, the default port
 number 5683 as defined in [RFC7252].

 * If ’tp_id’ is equal to 2, i.e., CoAP over UDP secured with DTLS,
 the default port number 5684 as defined in [RFC7252].

 * If ’tp_id’ is equal to 3, i.e., CoAP over TCP, the default port
 number 5683 as defined in [RFC8323].

 * If ’tp_id’ is equal to 4, i.e., CoAP over TCP secured with TLS,
 the default port number 5684 as defined in [RFC8323].

 * If ’tp_id’ is equal to 5, i.e., CoAP over WebSockets, the default
 port number 80 as defined in [RFC8323].

 * If ’tp_id’ is equal to 6, i.e., CoAP over WebSockets secured with
 TLS, the default port number 443 as defined in [RFC8323].

Tiloca & Dijk Expires 3 March 2024 [Page 9]

Internet-Draft Proxy Operations for Group Communication August 2023

4. Requirements and Objectives

 In this section, the word "proxy" is not limited to forward-proxies.
 Instead, it comprises also reverse-proxies and HTTP-to-CoAP proxies.

 This document assumes that the following requirements are fulfilled.

 * REQ1. The proxy is explicitly configured (allow-list) to perform
 proxied group requests on behalf of specific allowed client(s).

 * REQ2. The proxy MUST identify a client sending a unicast group
 request to be proxied, in order to verify whether the client is
 allowed-listed to do so. For example, this can rely on one of the
 following security associations.

 - A TLS [RFC8446] or DTLS [RFC6347][RFC9147] channel between the
 client and the proxy, where the client has been authenticated
 during the secure channel establishment.

 - A pairwise OSCORE [RFC8613] Security Context between the client
 and the proxy, as defined in
 [I-D.tiloca-core-oscore-capable-proxies].

 * REQ3. If secure, end-to-end communication is required between the
 client and the servers in the CoAP group, exchanged messages MUST
 be protected by using Group OSCORE
 [I-D.ietf-core-oscore-groupcomm], as discussed in Section 5 of
 [I-D.ietf-core-groupcomm-bis]. This requires the client and the
 servers to have previously joined the correct OSCORE group, for
 instance by using the approach described in
 [I-D.ietf-ace-key-groupcomm-oscore]. The correct OSCORE group to
 join can be pre-configured or alternatively discovered, for
 instance by using the approach described in
 [I-D.tiloca-core-oscore-discovery].

 This document defines how to achieve the following objectives.

 * OBJ1. The proxy gets an indication from the client that the
 client is in fact interested in and capable to handle multiple
 responses to a proxied group request. With particular reference
 to a unicast CoAP group request sent to the proxy, this means that
 the client is capable to receive those responses as separate CoAP
 responses, each matching with the original unicast request.

 * OBJ2. The proxy learns for how long it should wait for responses
 to a proxied group request, before starting to ignore following
 responses to it (except for notifications, if a CoAP Observe
 Option is used [RFC7641]).

Tiloca & Dijk Expires 3 March 2024 [Page 10]

Internet-Draft Proxy Operations for Group Communication August 2023

 * OBJ3. The proxy relays to the client any multiple responses to
 the proxied group request. With particular reference to a
 client’s original CoAP unicast request sent to the proxy, those
 responses are sent to the client as separate CoAP responses, each
 matching with the original unicast request.

 * OBJ4. The client is able to distinguish the different responses
 to the proxied group request, as well as their corresponding
 origin servers.

 * OBJ5. The client is enabled to optionally contact one or more of
 the responding origin servers in the future, either directly or
 via the proxy.

5. Protocol Description

 This section specifies the steps of the signaling protocol.

5.1. Request Sending at the Client

 This section defines the operations performed by the client, for
 sending a request targeting a group of servers via the proxy.

5.1.1. Request Sending

 The client proceeds according to the following steps.

 1. The client prepares a unicast CoAP group request addressed to the
 proxy. The request specifies the group URI where the request has
 to be forwarded to, as a string in the Proxi-URI option or by
 using the Proxy-Scheme option with the group URI constructed from
 the URI-* options (see Section 3.5.1 of
 [I-D.ietf-core-groupcomm-bis]).

 2. The client MUST retain the Token value used for this original
 unicast request beyond the reception of a first CoAP response
 matching with it. To this end, the client follows the same rules
 for Token retention defined for multicast CoAP requests in
 Section 3.1.5 of [I-D.ietf-core-groupcomm-bis].

 In particular, the client picks an amount of time T that it is
 fine to wait for before freeing up the Token value.
 Specifically, the value of T MUST be such that:

 * T < T_r , where T_r is the amount of time that the client is
 fine to wait for before potentially reusing the Token value.
 Note that T_r MUST NOT be less than MIN_TOKEN_REUSE_TIME
 defined in Section 3.1.5 of [I-D.ietf-core-groupcomm-bis].

Tiloca & Dijk Expires 3 March 2024 [Page 11]

Internet-Draft Proxy Operations for Group Communication August 2023

 * T should be at least the expected worst-case time taken by the
 request and response processing on the proxy and on the
 servers in the addressed CoAP group.

 * T should be at least the expected worst-case round-trip delay
 between the client and the proxy plus the worst-case round-
 trip delay between the proxy and any one of the origin
 servers.

 3. The client MUST include the Multicast-Timeout Option defined in
 Section 2 into the unicast request to send to the proxy. The
 option value specifies an amount of time T’ < T. The difference
 (T - T’) should be at least the expected worst-case round-trip
 time between the client and the proxy.

 The client can specify T’ = 0 as option value, thus indicating to
 be not interested in receiving responses from the origin servers
 through the proxy. In such a case, the client SHOULD also
 include a No-Response Option [RFC7967] with value 26 (suppress
 all response codes), if it supports the option.

 Consistently, if the unicast request to send to the proxy already
 included a No-Response Option with value 26, the client SHOULD
 specify T’ = 0 as value of the Multicast-Timeout Option.

 4. The client processes the request as defined in
 [I-D.ietf-core-groupcomm-bis], and also as in
 [I-D.ietf-core-oscore-groupcomm] when secure group communication
 is used between the client and the servers.

 5. The client sends the request to the proxy as a unicast CoAP
 message. When doing so, the client protects the request
 according to the security association it has with the proxy.

 The exact method that the client uses to estimate the worst-case
 processing times and round-trip delays mentioned above is out of the
 scope of this document. However, such a method is expected to be
 already used by the client when generally determining an appropriate
 Token lifetime and reuse interval.

5.1.2. Supporting Observe

 When using CoAP Observe [RFC7641], the client follows what is
 specified in Section 3.7 of [I-D.ietf-core-groupcomm-bis], with the
 difference that it sends a unicast request to the proxy, to be
 forwarded to the group of servers, as defined in Section 5.1.1 of
 this document.

Tiloca & Dijk Expires 3 March 2024 [Page 12]

Internet-Draft Proxy Operations for Group Communication August 2023

 Furthermore, the client especially follows what is specified in
 Section 5 of [RFC7641], i.e., it registers its interest to be an
 observer with the proxy, as if it was communicating with the servers.

5.2. Request Processing at the Proxy

 This section defines the operations performed by the proxy, when
 receiving a request to forward to a group of servers.

5.2.1. Request Processing

 Upon receiving the request from the client, the proxy proceeds
 according to the following steps.

 1. The proxy decrypts the request, according to the security
 association it has with the client.

 2. The proxy identifies the client, and verifies that the client is
 in fact allowed-listed to have its requests proxied to CoAP group
 URIs.

 3. The proxy verifies the presence of the Multicast-Timeout Option,
 as a confirmation that the client is fine to receive multiple
 CoAP responses matching with the same original request.

 If the Multicast-Timeout Option is not present, the proxy MUST
 stop processing the request and MUST reply to the client with a
 4.00 (Bad Request) response. The response MUST include a
 Multicast-Timeout Option with an empty (zero-length) value,
 indicating that the Multicast-Timeout Option was missing and has
 to be included in the request. As per Section 5.9.2 of [RFC7252]
 The response SHOULD include a diagnostic payload.

 4. The proxy retrieves the value T’ from the Multicast-Timeout
 Option, and then removes the option from the client’s request.

 5. The proxy forwards the client’s request to the group of servers.
 In particular, the proxy sends it as a CoAP group request over IP
 multicast, addressed to the group URI specified by the client.

 6. The proxy sets a timeout with the value T’ retrieved from the
 Multicast-Timeout Option of the original unicast request.

 In case T’ > 0, the proxy will ignore responses to the forwarded
 group request coming from servers, if received after the timeout
 expiration, with the exception of Observe notifications (see
 Section 5.4).

Tiloca & Dijk Expires 3 March 2024 [Page 13]

Internet-Draft Proxy Operations for Group Communication August 2023

 In case T’ = 0, the proxy will ignore all responses to the
 forwarded group request coming from servers.

 If the proxy supports caching of responses, it can serve the original
 unicast request also by using cached responses, as per Section 7.

5.2.2. Supporting Observe

 When using CoAP Observe [RFC7641], the proxy takes the role of the
 client and registers its own interest to observe the target resource
 with the servers as per Section 5 of [RFC7641].

 When doing so, the proxy especially follows what is specified for the
 client in Section 3.7 of [I-D.ietf-core-groupcomm-bis], by forwarding
 the group request to the servers over IP multicast as defined in
 Section 5.2.1 of this document.

5.3. Request and Response Processing at the Server

 This section defines the operations performed by the server, when
 receiving a group request from the proxy.

5.3.1. Request and Response Processing

 Upon receiving the request from the proxy, the server proceeds
 according to the following steps.

 1. The server processes the group request as defined in
 [I-D.ietf-core-groupcomm-bis], and also as in
 [I-D.ietf-core-oscore-groupcomm] when secure group communication
 is used between the client and the server.

 2. The server processes the response to be relayed to the client as
 defined in [I-D.ietf-core-groupcomm-bis], and also as in
 [I-D.ietf-core-oscore-groupcomm] when secure group communication
 is used between the client and the server.

5.3.2. Supporting Observe

 When using CoAP Observe [RFC7641], the server especially follows what
 is specified in Section 3.7 of [I-D.ietf-core-groupcomm-bis] and
 Section 5 of [RFC7641].

5.4. Response Processing at the Proxy

 This section defines the operations performed by the proxy, when
 receiving a response matching with a forwarded group request.

Tiloca & Dijk Expires 3 March 2024 [Page 14]

Internet-Draft Proxy Operations for Group Communication August 2023

5.4.1. Response Processing

 Upon receiving a response matching with the group request before the
 amount of time T’ has elapsed, the proxy proceeds according to the
 following steps.

 1. The proxy MUST include the Response-Forwarding Option defined in
 Section 3 into the response. The proxy specifies as option value
 the addressing information of the server generating the response,
 encoded as defined in Section 3. In particular:

 * The ’srv_addr’ element of the ’srv_info’ array MUST specify
 the server IPv6 address if the multicast request was destined
 for an IPv6 multicast address, and MUST specify the server
 IPv4 address if the multicast request was destined for an IPv4
 multicast address.

 * If present, the ’srv_port’ element of the ’srv_info’ array
 MUST specify the port number of the server as the source port
 number of the response. This element MUST be present if the
 source port number of the response differs from the default
 port number for the transport protocol specified in the
 ’tp_id’ element.

 2. The proxy forwards the response back to the client. When doing
 so, the proxy protects the response according to the security
 association it has with the client.

 As discussed in Section 3.1.6 of [I-D.ietf-core-groupcomm-bis], it is
 possible that a same server replies with multiple responses to the
 same group request, i.e., with the same Token. As long as the proxy
 forwards responses to a group request back to the origin client, the
 proxy MUST follow the steps defined above and forward also such
 multiple responses "as they come".

 Upon timeout expiration, i.e., T’ seconds after having sent the group
 request over IP multicast, the proxy frees up its local Token value
 associated with that request. Thus, following late responses to the
 same group request will be discarded and not forwarded back to the
 client.

5.4.2. Supporting Observe

 When using CoAP Observe [RFC7641], the proxy acts as a client
 registered with the servers, as described earlier in Section 5.2.2.

Tiloca & Dijk Expires 3 March 2024 [Page 15]

Internet-Draft Proxy Operations for Group Communication August 2023

 Furthermore, the proxy takes the role of a server when forwarding
 notifications from origin servers back to the client. To this end,
 the proxy follows what is specified in Section 3.7 of
 [I-D.ietf-core-groupcomm-bis] and Section 5 of [RFC7641], with the
 following additions.

 * At step 1 in Section 5.4, the proxy includes the Response-
 Forwarding Option in every notification, including non-2.xx
 notifications resulting in removing the proxy from the list of
 observers of the origin server.

 * The proxy frees up its Token value used for a group observation
 only if, after the timeout expiration, no 2.xx (Success) responses
 matching with the group request and also including an Observe
 option have been received from any origin server. After that, as
 long as observations are active with servers in the group for the
 target resource of the group request, notifications from those
 servers are forwarded back to the client, as defined in
 Section 5.4, and the Token value used for the group observation is
 not freed during this time.

 Finally, the proxy SHOULD regularly verify that the client is still
 interested in receiving observe notifications for a group
 observation. To this end, the proxy can rely on the same approach
 discussed for servers in Section 3.7 of
 [I-D.ietf-core-groupcomm-bis], with more details available in
 Section 4.5 of [RFC7641].

5.5. Response Processing at the Client

 This section defines the operations performed by the client, when
 receiving a response matching with a request that targeted a group of
 servers via the proxy.

5.5.1. Response Processing

 Upon receiving from the proxy a response matching with the original
 unicast request before the amount of time T has elapsed, the client
 proceeds according to the following steps.

 1. The client processes the response as defined in
 [I-D.ietf-core-groupcomm-bis]. When doing so, the client
 decrypts the response according to the security association it
 has with the proxy.

Tiloca & Dijk Expires 3 March 2024 [Page 16]

Internet-Draft Proxy Operations for Group Communication August 2023

 2. If secure group communication is used end-to-end between the
 client and the servers, the client processes the response
 resulting at the end of step 1, as defined in
 [I-D.ietf-core-oscore-groupcomm].

 3. The client identifies the origin server, whose addressing
 information is specified as value of the Response-Forwarding
 Option. If the ’srv_port’ element of the ’tp_info’ array in the
 Response-Forwarding Option is not present or specifies the CBOR
 simple value "null" (0xf6), then the client determines the port
 number where to send unicast requests to the server -- in case
 this is needed -- as defined in Section 3. In the former case,
 the assumed default port number depends on the transport protocol
 specified by the ’tp_id’ element of the ’tp_info’ array (see
 Section 3.2).

 In particular, the client is able to distinguish different
 responses as originated by different servers. Optionally, the
 client may contact one or more of those servers individually,
 i.e., directly (bypassing the proxy) or indirectly (via a proxied
 unicast request).

 In order to individually reach an origin server again through the
 proxy, the client is not required to understand or support the
 transport protocol indicated in the Response-Forwarding Option,
 as used between the proxy and the origin server, in case it
 differs from "UDP" (1). That is, using the IPv4/IPv6 address
 value and optional port value from the Response-Forwarding
 Option, the client simply creates the correct URI for the
 individual request, by means of the Proxy-Uri or Uri-Scheme
 Option in the unicast request to the proxy. The client uses the
 transport protocol it knows, and has used before, to send the
 request to the proxy.

 As discussed in Section 3.1.6 of [I-D.ietf-core-groupcomm-bis], it is
 possible that the client receives multiple responses to the same
 group request, i.e., with the same Token, from the same origin
 server. The client normally processes at the CoAP layer each of
 those responses from the same origin server, and decides how to
 exactly handle them depending on its available context information
 (see Section 3.1.6 of [I-D.ietf-core-groupcomm-bis]).

 Upon the timeout expiration, i.e., T seconds after having sent the
 original unicast request to the proxy, the client frees up its local
 Token value associated with that request. Note that, upon this
 timeout expiration, the Token value is not eligible for possible
 reuse yet (see Section 5.1.1). Thus, until the actual amount of time
 before enabling Token reusage has elapsed, any following late

Tiloca & Dijk Expires 3 March 2024 [Page 17]

Internet-Draft Proxy Operations for Group Communication August 2023

 responses to the same request forwarded by the proxy will be
 discarded, as these are not matching (by Token) with any active
 request from the client.

5.5.2. Supporting Observe

 When using CoAP Observe [RFC7641], the client frees up its Token
 value only if, after the timeout T expiration, no 2.xx (Success)
 responses matching with the original unicast request and also
 including an Observe option have been received.

 Instead, if at least one such response has been received, the client
 continues receiving those notifications as forwarded by the proxy, as
 long as the observation for the target resource of the original
 unicast request is active.

5.6. Example

 The example in this section refers to the following actors.

 * One origin client C, with address C_ADDR and port number C_PORT.

 * One proxy P, with address P_ADDR and port number P_PORT.

 * Two origin servers S1 and S2, where the server Sx has address
 Sx_ADDR and port number Sx_PORT.

 The origin servers are members of a CoAP group with IP multicast
 address G_ADDR and port number G_PORT. Also, the origin servers are
 members of a same application group, and share the same resource /r.

 The communication between C and P is based on CoAP over UDP, as per
 [RFC7252]. The communication between P and the origin servers is
 based on CoAP over UDP and IP multicast, as per
 [I-D.ietf-core-groupcomm-bis].

 Finally, ’bstr(X)’ denotes a CBOR byte string where its value is the
 byte serialization of X.

 C P S1 S2
------------------------->		
Src: C_ADDR:C_PORT		
Dst: P_ADDR:P_PORT		
Proxi-URI {		
coap://G_ADDR:G_PORT/r		
}		
Multicast-Timeout: 60		

Tiloca & Dijk Expires 3 March 2024 [Page 18]

Internet-Draft Proxy Operations for Group Communication August 2023

	Src: P_ADDR:P_PORT	
	Dst: G_ADDR:G_PORT	
	Uri-Path: /r	
	---------------+----->	
	\	
	+----------------->	
	/* t = 0 : P starts	
	accepting responses	
	for this request */	
	<---------------------	
	Src: S1_ADDR:G_PORT	
	Dst: P_ADDR:P_PORT	
<-------------------------		
Src: P_ADDR:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[1, /*CoAP over UDP*/		
#6.260(bstr(S1_ADDR)),		
null /* G_PORT */		
]		
}		
	<-----------------------------------	
	Src: S2_ADDR:S2_PORT	
	Dst: P_ADDR:P_PORT	
<-------------------------		
Src: P_ADDR:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[1, /*CoAP over UDP*/		
#6.260(bstr(S2_ADDR)),		
S2_PORT		
]		
}		
/* At t = 60, P stops accepting		
responses for this request */		

 Figure 3: Workflow example with a forward-proxy

Tiloca & Dijk Expires 3 March 2024 [Page 19]

Internet-Draft Proxy Operations for Group Communication August 2023

6. Reverse-Proxies

 The use of reverse-proxies in group communication scenarios is
 defined in Section 3.5.2 of [I-D.ietf-core-groupcomm-bis].

 This section clarifies how the Multicast-Timeout Option is effective
 also in such a context, in order for:

 * The proxy to explictly reveal itself as a reverse-proxy to the
 client.

 * The client to indicate to the proxy of being aware that it is
 communicating with a reverse-proxy, and for how long it is willing
 to receive responses to a proxied group request.

 This practically addresses the addional issues compared to the case
 with a forward-proxy, as compiled in Section 3.5.2 of
 [I-D.ietf-core-groupcomm-bis]. A reverse-proxy may also operate
 without support of the Multicast-Timeout Option, as defined in that
 section.

 Appendix A provides examples with a reverse-proxy.

6.1. Processing on the Client Side

 If a client sends a CoAP request intended to a group of servers and
 is aware of actually communicating with a reverse-proxy, then the
 client SHOULD perform the steps defined in Section 5.1.1. In
 particular, this results in a request sent to the proxy including a
 Multicast-Timeout Option.

 An exception is the case where the reverse-proxy has a pre-configured
 timeout value T_PROXY, as the default timeout value to use for when
 to stop accepting responses from the servers, after the reception of
 the original unicast request from the client. In this case, a client
 aware of such a configuration MAY omit the Multicast-Timeout Option
 in the request sent to the proxy.

 The client processes the CoAP responses forwarded back by the proxy
 as defined in Section 5.5.

6.2. Processing on the Proxy Side

 If the proxy receives a CoAP request and determines that it should be
 forwarded to a group of servers over IP multicast, then the proxy
 performs the steps defined in Section 5.2.

Tiloca & Dijk Expires 3 March 2024 [Page 20]

Internet-Draft Proxy Operations for Group Communication August 2023

 In particular, when such a request does not include a Multicast-
 Timeout Option, the proxy SHOULD explicitly reveal itself as a
 reverse-proxy, by sending a 4.00 (Bad Request) response including a
 Multicast-Timeout Option with empty (zero-length) value.

 An exception is the case where the reverse-proxy has a pre-configured
 timeout value T_PROXY, as default timeout value to use for when to
 stop accepting responses from the servers, after the reception of the
 original unicast request from the client. In this case, the proxy
 MAY replace the steps 3 and 4 in Section 5.2.1 with the following
 step.

 A. The proxy verifies the presence of the Multicast-Timeout Option,
 as a confirmation that the client is willing to receive multiple CoAP
 responses matching with the same original request. Then, the proxy
 performs the following actions.

 * If the Multicast-Timeout Option is present, the proxy retrieves
 the value T’ from the Multicast-Timeout Option, and then removes
 the option from the client’s request. That is, the timeout value
 indicated in the option overrides the pre-configured timeout value
 T_PROXY.

 * If the Multicast-Timeout option is not present, the proxy checks
 that, according to its local configuration, both the following
 conditions hold for the client (which, at this point, has been
 successfully authenticated).

 - COND_1 : The client is aware of the default timeout value
 T_PROXY pre-configured at the proxy.

 - COND_2 : The client is able to process multiple responses to
 the same request.

 These conditions are expected to hold for clients that are locally
 registered at the proxy, successfully authenticated and allowed-
 listed to have their requests proxied to CoAP group URIs.

 If the proxy is able to successfully assert that both the two
 conditions hold, then the proxy considers the value T’ as equal to
 T_PROXY and proceeds to step 5.

Tiloca & Dijk Expires 3 March 2024 [Page 21]

Internet-Draft Proxy Operations for Group Communication August 2023

 If the proxy is not able to successfully assert that both the two
 conditions hold, the proxy MUST stop processing the request and
 MUST reply to the client with a 4.00 (Bad Request) response. The
 response MUST include a Multicast-Timeout Option with an empty
 (zero-length) value, indicating that the Multicast-Timeout Option
 was missing and has to be included in the request. As per
 Section 5.9.2 of [RFC7252] The response SHOULD include a
 diagnostic payload.

 The proxy processes the CoAP responses forwarded back to the client
 as defined in Section 5.4.

7. Caching

 A proxy MAY cache responses to a group request, as defined in
 Section 5.7.1 of [RFC7252]. In particular, the same rules apply to
 determine the set of request options used as "Cache-Key", and to
 determine the max-age values offered for responses served from the
 cache.

 A cache entry is associated with one server and stores one response
 from that server, regardless whether it is a response to a unicast
 request or to a group request. The following two types of requests
 can produce a hit to a cache entry.

 * A matching request intended to that server, i.e., to the
 corresponding unicast URI.

 When the stored response is a response to a unicast request to the
 server, the unicast URI of the matching request is the same target
 URI used for the original unicast request.

 When the stored response is a response to a group request to the
 CoAP group, the unicast URI of the matching request is the target
 URI obtained by replacing the authority part of the group URI in
 the original group request with the transport-layer source address
 and port number of the response.

 * A matching group request intended to the CoAP group, i.e., to the
 corresponding group URI.

 That is, a matching group request produces a hit to multiple cache
 entries, each of which associated with one of the CoAP servers
 currently member of the CoAP group.

Tiloca & Dijk Expires 3 March 2024 [Page 22]

Internet-Draft Proxy Operations for Group Communication August 2023

 Note that, as per the freshness model defined in Section 7.1, the
 proxy might serve a group request exclusively from its cached
 responses only when it knows all the CoAP servers that are current
 members of the CoAP group and it has a valid cache entry for each
 of them.

 When forwarding a GET or FETCH group request to the servers in the
 CoAP group, the proxy behaves like a CoAP client as defined in
 Section 3.2 of [I-D.ietf-core-groupcomm-bis], with the following
 additions.

 * As discussed in Section 5.4.1, the proxy can receive multiple
 responses to the same group request from a same origin server, and
 forwards them back to the origin client "as they come". When this
 happens, each of such multiple responses is stored in the cache
 entry associated with the server "as it comes", possibly replacing
 an already stored response from that server.

 * As discussed in Section 7.4, when communications in the group are
 secured with Group OSCORE [I-D.ietf-core-oscore-groupcomm],
 additional means are required to enable cacheability of responses
 at the proxy.

 The following subsections define the freshness model and validation
 model that the proxy uses for cached responses.

7.1. Freshness Model

 The proxy relies on the same freshness model defined in Section 3.2.1
 of [I-D.ietf-core-groupcomm-bis], by taking the role of a CoAP client
 with respect to the servers in the CoAP group.

 In particular, when receiving a unicast group request from the
 client, the proxy MAY serve it by using exclusively cached responses
 without forwarding the group request to the servers in the CoAP
 group, but only if both the following conditions hold.

 * The proxy knows all the CoAP servers that are currently members of
 the CoAP group for which the group request is intended to.

 * The proxy’s cache currently stores a fresh response for each of
 those CoAP servers.

Tiloca & Dijk Expires 3 March 2024 [Page 23]

Internet-Draft Proxy Operations for Group Communication August 2023

 The specific way that the proxy uses to determine the CoAP servers
 currently members of the target CoAP group is out of scope for this
 document. As possible examples, the proxy can synchronize with a
 group manager server; rely on well-known time patterns used in the
 application or in the network for the addition of new CoAP group
 members; observe group join requests or IGMP/MLD multicast group join
 messages, e.g., if embedded in a multicast router.

 When forwarding the group request to the servers, the proxy may have
 fresh responses stored in its cache for (some of) those servers. In
 such a case, the proxy uses (also) those cached responses to serve
 the original unicast group request, as defined below.

 * The request processing in Section 5.2.1 is extended as follows.

 After setting the timeout with value T’ > 0 in step 6, the proxy
 checks whether its cache currently stores fresh responses to the
 group request. For each of such responses, the proxy compares the
 residual lifetime L of the corresponding cache entry against the
 value T’.

 If a cached response X is such that L < T’, then the proxy
 forwards X back to the client at its earliest convenience.
 Otherwise, the proxy does not forward X back to the client right
 away, and rather waits for approaching the timeout expiration, as
 discussed in the next point.

 * The response processing in Section 5.4.1 is extended as follows.

 Before the timeout with original value T’ > 0 expires and the
 proxy stops accepting responses to the group request, the proxy
 checks whether it stores in its cache any fresh response X to the
 group request such that both the following conditions hold.

 - The cache entry E storing X was already existing when the proxy
 forwarded the group request.

 - The proxy has received no response to the forwarded group
 request from the server associated with E.

 Then, the proxy sends back to the client each response X stored in
 its cache and selected as above, before the timeout expires.

Tiloca & Dijk Expires 3 March 2024 [Page 24]

Internet-Draft Proxy Operations for Group Communication August 2023

 Note that, from the forwarding of the group request until the
 timeout expiration, the proxy still forwards responses to the
 group request back to the client "as they come" (see
 Section 5.4.1). Also, such responses possibly refresh older
 responses from the same servers that the proxy has stored in its
 cache, as defined earlier in Section 7.

7.2. Validation Model

 This section defines the revalidation of responses, separately
 between the proxy and the origin servers, as well as between the
 origin client and the proxy.

7.2.1. Proxy-Servers Revalidation with Unicast Requests

 The proxy MAY revalidate a cached response by making a GET or FETCH
 request on the related unicast request URI, i.e., by taking the role
 of a CoAP client with respect to a server in the CoAP group.

 As discussed in Section 7.4, this is however not possible for the
 proxy if communications in the group are secured end-to-end between
 origin client and origin servers by using Group OSCORE
 [I-D.ietf-core-oscore-groupcomm].

 [TODO

 It can be actually possible to enable revalidation of responses
 between proxy and server, also in this case where Group OSCORE is
 used end-to-end between client and origin servers.

 Fundamentally, this requires to define the possible use of the ETag
 option also as an outer option for OSCORE. Thus, in addition to the
 normal inner ETag, a server can add also an outer ETag option
 intended to the proxy.

 Since validation of responses assumes that cacheability of responses
 is possible in the first place, it would be convenient to define the
 use of ETag as outer option in [I-D.amsuess-core-cachable-oscore].

 In case OSCORE is also used between the proxy and an individual
 origin server as per [I-D.tiloca-core-oscore-capable-proxies], then
 the outer ETag option would be seamlessly protected with the OSCORE
 Security Context shared between the proxy and the origin server.

 The following text can be used to replace the last paragraph above.

Tiloca & Dijk Expires 3 March 2024 [Page 25]

Internet-Draft Proxy Operations for Group Communication August 2023

 As discussed in Section 7.4, the following applies when Group OSCORE
 [I-D.ietf-core-oscore-groupcomm] is used to secure communications
 end-to-end between the origin client and the origin servers in the
 group.

 * Additional means are required to enable cacheability of responses
 at the proxy (see Section 7.4.1).

 * If a cached response included an outer ETag option intended to the
 proxy, then the proxy can perform revalidatation of the cached
 response, by making a request to the unicast URI targeting the
 server, and including outer ETag Option(s).

 This is possible also in case the proxy and the origin server use
 OSCORE to further protect the exchanged request and response, as
 defined in [I-D.tiloca-core-oscore-capable-proxies]. In such a
 case, the originally outer ETag option is protected with the
 OSCORE Security Context shared between the proxy and the origin
 server, before transferring the message over the communication leg
 between the proxy and origin server.

]

7.2.2. Proxy-Servers Revalidation with Group Requests

 When forwarding a group request to the servers in the CoAP group, the
 proxy MAY revalidate one or more stored responses that it has cached.

 To this end, the proxy relies on the same validation model defined in
 Section 3.2.2 of [I-D.ietf-core-groupcomm-bis] and using the ETag
 Option, by taking the role of a CoAP client with respect to the
 servers in the CoAP group.

 As discussed in Section 7.4, this is however not possible for the
 proxy if communications in the group are secured end-to-end between
 origin client and origin servers by using Group OSCORE
 [I-D.ietf-core-oscore-groupcomm].

 [TODO

 See the notes in Section 7.2.1.

 The following text can be used to replace the last paragraph above.

Tiloca & Dijk Expires 3 March 2024 [Page 26]

Internet-Draft Proxy Operations for Group Communication August 2023

 As discussed in Section 7.4, the following applies when Group OSCORE
 [I-D.ietf-core-oscore-groupcomm] is used to secure communications
 end-to-end between the origin client and the origin servers in the
 group.

 * Additional means are required to enable cacheability of responses
 at the proxy (see Section 7.4.1).

 * If a cached response included an outer ETag option intended to the
 proxy, then the proxy can perform revalidatation of the cached
 response, by making a request to the group URI targeting the CoAP
 group, and including outer ETag Option(s).

 This is possible also in case the proxy and the origin servers use
 Group OSCORE to further protect the exchanged request and
 response, as defined in [I-D.tiloca-core-oscore-capable-proxies].
 In such a case, the originally outer ETag option is protected with
 the Group OSCORE Security Context shared between the proxy and the
 origin server, before transferring the message over the
 communication leg between the proxy and origin server.

]

7.3. Client-Proxy Revalidation with Group Requests

 A client MAY revalidate the full set of responses to a group request
 by leveraging the corresponding cache entries at the proxy. To this
 end, this document defines the new Group-ETag Option.

 The Group-ETag Option has the properties summarized in Figure 4,
 which extends Table 4 of [RFC7252]. The Group-ETag Option is
 elective, safe to forward, part of the cache key, and repeatable.

 The option is intended for group requests sent to a proxy to be
 forwarded to the servers in a CoAP group, as well as for the
 associated responses.

 +------+---+---+---+---+------------+--------+--------+---------+
 | No. | C | U | N | R | Name | Format | Length | Default |
 +------+---+---+---+---+------------+--------+--------+---------+
 | | | | | | | | | |
 | TBD3 | | | | x | Group-ETag | opaque | 1-8 | (none) |
 | | | | | | | | | |
 +------+---+---+---+---+------------+--------+--------+---------+
 C=Critical, U=Unsafe, N=NoCacheKey, R=Repeatable

 Figure 4: The Group-ETag Option.

Tiloca & Dijk Expires 3 March 2024 [Page 27]

Internet-Draft Proxy Operations for Group Communication August 2023

 The Group-ETag Option has the same properties of the ETag Option
 defined in Section 5.10.6 of [RFC7252].

 The Group-ETag Option is of class U in terms of OSCORE processing
 (see Section 4.1 of [RFC8613]).

 A proxy MUST NOT provide this form of validation if it is not in a
 position to serve a group request by using exclusively cached
 responses, i.e., without sending the group request to the servers in
 the CoAP group (see Section 7.1).

 If the proxy supports this form of response revalidation, the
 following applies.

 * The proxy defines J as a joint set including all the cache entries
 currently storing fresh responses that satisfy a group request. A
 set J is "complete" if it includes a valid cache entry for each of
 the CoAP servers currently members of the CoAP group.

 * When the set J becomes "complete", the proxy assigns it an entity-
 tag value. The proxy MUST update the current entity-tag value,
 when J is "complete" and one of its cache entry is updated.

 * When forwarding to the client a 2.05 (Content) response to a GET
 or FETCH group request, the proxy MAY include one Group-ETag
 Option, in case the set J is "complete". Such a response MUST NOT
 include more than one Group-ETag Option. The option value
 specifies the entity-tag value currently associated with the set
 J.

 When sending to the proxy a GET or FETCH request to be forwarded to
 the servers in the CoAP group, the client MAY include one or more
 Group-ETag Options. Each option specifies one entity-tag value,
 applicable to the set J of cache entries that can be hit by the group
 request.

 The proxy MAY perform the following actions, in case the group
 request produces a hit to the cache entry of each CoAP server
 currently member of the CoAP group, i.e., the set J associated with
 the group request is "complete".

 * The proxy checks whether the current entity-tag value of the set J
 matches with one of the entity-tag values specified in the Group-
 ETag Options of the unicast group request from the client.

Tiloca & Dijk Expires 3 March 2024 [Page 28]

Internet-Draft Proxy Operations for Group Communication August 2023

 * In case of positive match, the proxy replies with a single 2.03
 (Valid) response. This response has no payload and MUST include
 one Group-ETag Option, specifying the current entity-tag value of
 the set J.

 That is, the 2.03 (Valid) response from the proxy indicates to the
 client that the stored responses idenfied by the entity-tag given in
 the response’s Group-ETag Option can be reused, after updating each
 of them as described in Section 5.9.1.3 of [RFC7252]. In effect, the
 client can determine if any of the stored representations from the
 respective cache entries at the proxy is current, without needing to
 transfer any of them again.

7.4. Caching of End-To-End Protected Responses at Proxies

 When using Group OSCORE [I-D.ietf-core-oscore-groupcomm] to protect
 communications end-to-end between a client and multiple servers in
 the group, it is normally not possible for an intermediary proxy to
 cache protected responses.

 In fact, when starting from the same plain CoAP message, different
 clients generate different protected requests to send on the wire.
 This prevents different clients to generate potential cache hits, and
 thus makes response caching at the proxy pointless.

7.4.1. Deterministic Requests to Achieve Cacheability

 For application scenarios that use secure group communication, it is
 still possible to achieve cacheability of responses at proxies, by
 using the approach defined in [I-D.amsuess-core-cachable-oscore]
 which is based on Deterministic Requests protected with the pairwise
 mode of Group OSCORE. This approach is limited to group requests
 that are safe (in the RESTful sense) to process and do not yield side
 effects at the server. As for any protected group request, it
 requires the clients and all the servers in the CoAP group to have
 already joined the correct OSCORE group.

 Starting from the same plain CoAP request, this allows different
 clients in the OSCORE group to deterministically generate a same
 request protected with Group OSCORE, which is sent to the proxy for
 being forwarded to the CoAP group. The proxy can now effectively
 cache the resulting responses from the servers in the CoAP group,
 since the same plain CoAP request will result again in the same
 Deterministic Request and thus will produce a cache hit.

 When caching of Group OSCORE secured responses is enabled at the
 proxy, the same as defined in Section 7 applies, with respect to
 cache entries and their lifetimes.

Tiloca & Dijk Expires 3 March 2024 [Page 29]

Internet-Draft Proxy Operations for Group Communication August 2023

 Note that different Deterministic Requests result in different cache
 entries at the proxy. This includes the case where different plain
 group requests differ only in their set of ETag Options, as defined
 in Section 3.2.2 of [I-D.ietf-core-groupcomm-bis].

 That is, even though the servers would produce the same plain CoAP
 responses in reply to two different Deterministic Requests, those
 will result in different protected responses to each respective
 Deterministic Request, hence in different cache entries at the proxy.

 Thus, given a plain group request, a client needs to reuse the same
 set of ETag Options, in order to send that group request as a
 Deterministic Request that can actually produce a cache hit at the
 proxy. However, while this would prevent the caching at the proxy to
 be inefficient and unnecessarily redundant, it would also limit the
 flexibility of end-to-end response revalidation for a client.

7.4.2. Validation of Responses

 Response revalidation remains possible end-to-end between the client
 and the servers in the group, by means of including inner ETag
 Option(s) as defined in Sections 3.2 and 3.2.2 of
 [I-D.ietf-core-groupcomm-bis].

 Furthermore, it remains possible for a client to attempt revalidating
 responses to a group request from a "complete" set of cache entries
 at the proxy, by using the Group-ETag Option as defined in
 Section 7.3.

 When directly interacting with the servers in the CoAP group to
 refresh its cache entries, the proxy cannot rely on response
 revalidation anymore. This applies to both the case where the
 request is addressed to a single server and sent to the related
 unicast URI (see Section 7.2.1) or instead is a group request
 addressed to the CoAP group and sent to the related group URI (see
 Section 7.2.2).

 [TODO

 See the notes in Section 7.2.1.

 The following text can be used to replace the last paragraph above.

 When directly interacting with the servers in the CoAP group to
 refresh its cache entries, the proxy also remains able to perform
 response revalidation. That is, if a cached response included an
 outer ETag option intended to the proxy, then the proxy can perform

Tiloca & Dijk Expires 3 March 2024 [Page 30]

Internet-Draft Proxy Operations for Group Communication August 2023

 revalidatation of the cached response, by making a request to the
 unicast URI addressed to a single server and sent to the related
 unicast URI (see Section 7.2.1) or a group request addressed to the
 CoAP group and sent to the related group URI (see Section 7.2.2).

]

8. Chain of Proxies

 A client may be interested to access a resource at a group of origin
 servers which is reached through a chain of two or more proxies.

 That is, these proxies are configured into a chain, where each non-
 last proxy is configured to forward (group) requests to the next hop
 towards the origin servers. Also, each non-first proxy is configured
 to forward back responses to (the previous hop proxy towards) the
 origin client.

 This section specifies how the signaling protocol defined in
 Section 5 is used in that setting. Except for the last proxy before
 the origin servers, every other proxy in the chain takes the role of
 client with respect to the next hop towards the origin servers.
 Also, every proxy in the chain except the first takes the role of
 server towards the previous proxy closer to the origin client.

 Accordingly, possible caching of responses at each proxy works as
 defined in Section 7 and Section 7.4. Also, possible revalidation of
 responses cached ad each proxy and based on the Group-ETag option
 works as defined in Section 7.3 and Section 7.4.2.

 The requirements REQ1 and REQ2 defined in Section 4 MUST be fulfilled
 for each proxy in the chain. That is, every proxy in the chain has
 to be explicitly configured (allow-list) to allow proxied group
 requests from specific senders, and MUST identify those senders upon
 receiving their group request. For the first proxy in the chain,
 that sender is the origin client. For each other proxy in the chain,
 that sender is the previous hop proxy closer to the origin client.
 In either case, a proxy can identify the sender of a group request by
 the same means mentioned in Section 4.

8.1. Request Processing at the Proxy

 Upon receiving a group request to be forwarded to a CoAP group URIs,
 a proxy proceed as follows.

 If the proxy is the last one in the chain, i.e., it is the last hop
 before the origin servers, the proxy performs the steps defined in
 Section 5.2, with no modifications.

Tiloca & Dijk Expires 3 March 2024 [Page 31]

Internet-Draft Proxy Operations for Group Communication August 2023

 Otherwise, the proxy performs the steps defined in Section 5.2, with
 the following differences.

 * At steps 1-3, "client" refers to the origin client for the first
 proxy in the chain; or to the previous hop proxy closer to the
 origin client, otherwise.

 * At step 4, the proxy rather performs the following actions.

 1. The proxy retrieves the value T’ from the Multicast-Timeout
 Option, and does not remove the option.

 2. In case T’ > 0, the proxy picks an amount of time T it is fine
 to wait for before freeing up its local Token value to use
 with the next hop towards the origin servers. To this end,
 the proxy MUST follow what is defined at step 2 of
 Section 5.1.1 for the origin client, with the following
 differences.

 - T MUST be greater than the retrieved value T’, i.e., T’ <
 T.

 - The worst-case message processing time takes into account
 all the next hops towards the origin servers, as well as
 the origin servers themselves.

 - The worst-case round-trip delay takes into account all the
 legs between the proxy and the origin servers.

 3. In case T’ > 0, the proxy replaces the value of the Multicast-
 Timeout Option with a new value T’’, such that:

 - T’’ < T. The difference (T - T’’) should be at least the
 expected worst-case round-trip time between the proxy and
 the next hop towards the origin servers.

 - T’’ < T’. The difference (T’ - T’’) should be at least the
 expected worst-case round-trip time between the proxy and
 the (previous hop proxy closer to the) origin client.

 If the proxy is not able to determine a value T’’ that
 fulfills both the requirements above, the proxy MUST stop
 processing the request and MUST respond with a 5.05 (Proxying
 Not Supported) error response to the previous hop proxy closer
 to the origin client. The proxy SHOULD include a Multicast-
 Timeout Option, set to the minimum value T’ that would be
 acceptable in the Multicast-Timeout Option of a group request
 to forward.

Tiloca & Dijk Expires 3 March 2024 [Page 32]

Internet-Draft Proxy Operations for Group Communication August 2023

 Upon receiving such an error response, any proxy in the chain
 MAY send an updated group request to the next hop towards the
 origin servers, specifying in the Multicast-Timeout Option a
 value T’ greater than in the previous request. If this does
 not happen, the proxy receiving the error response MUST also
 send a 5.05 (Proxying Not Supported) error response to the
 previous hop proxy closer to the origin client. Like the
 received one, also this error response SHOULD include a
 Multicast-Timeout Option, set to the minimum value T’
 acceptable by the proxy sending the error response.

 * At step 5, the proxy forwards the request to the next hop towards
 the origin servers.

 * At step 6, the proxy sets a timeout with the value T’ retrieved
 from the Multicast-Timeout Option of the request received from the
 (previous hop proxy closer to the) origin client.

 In case T’ > 0, the proxy will ignore responses to the forwarded
 group request coming from the (next hop towards the) origin
 servers, if received after the timeout expiration, with the
 exception of Observe notifications (see Section 5.4).

 In case T’ = 0, the proxy will ignore all responses to the
 forwarded group request coming from the (next hop towards the)
 origin servers.

8.1.1. Supporting Observe

 When using CoAP Observe [RFC7641], what is defined in Section 5.2.2
 applies for the last proxy in the chain, i.e., the last hop before
 the origin servers.

 Any other proxy in the chain acts as a client and registers its own
 interest to observe the target resource with the next hop towards the
 origin servers, as per Section 5 of [RFC7641].

8.2. Response Processing at the Proxy

 Upon receiving a response matching with the group request before the
 amount of time T’ has elapsed, the proxy proceeds as follows.

 If the proxy is the last one in the chain, i.e., it is the last hop
 before the origin servers, the proxy performs the steps defined in
 Section 5.4, with no modifications.

 Otherwise, the proxy performs the steps defined in Section 5.4, with
 the following differences.

Tiloca & Dijk Expires 3 March 2024 [Page 33]

Internet-Draft Proxy Operations for Group Communication August 2023

 * The proxy skips step 1. In particular, the proxy MUST NOT remove,
 alter or replace the Response-Forwarding Option.

 * At step 2, "client" refers to the origin client for the first
 proxy in the chain; or to the previous hop proxy closer to the
 origin client, otherwise.

 As to the possible reception of multiple responses to the same group
 request from the same (next hop proxy towards the) origin server, the
 same as defined in Section 5.4.1 applies. That is, as long as the
 proxy forwards responses to a group request back to the (previous hop
 proxy closer to the) origin client, the proxy MUST follow the steps
 above and forward also such multiple responses "as they come".

 Upon timeout expiration, i.e., T seconds after having forwarded the
 group request to the next hop towards the origin servers, the proxy
 frees up its local Token value associated with that request. Thus,
 following late responses to the same group request will be discarded
 and not forwarded back to the (previous hop proxy closer to the)
 origin client.

8.2.1. Supporting Observe

 When using CoAP Observe [RFC7641], what is defined in Section 5.4.2
 applies for the last proxy in the chain, i.e., the last hop before
 the origin servers.

 As to any other proxy in the chain, the following applies.

 * The proxy acts as a client registered with the next hop towards
 the origin servers, as described earlier in Section 8.1.1.

 * The proxy takes the role of a server when forwarding notifications
 from the next hop to the origin servers back to the (previous hop
 proxy closer to the) origin client, as per Section 5 of [RFC7641].

 * The proxy frees up its Token value used for a group observation
 only if, after the timeout expiration, no 2.xx (Success) responses
 matching with the group request and also including an Observe
 option have been received from the next hop towards the origin
 servers. After that, as long as the observation for the target
 resource of the group request is active with the next hop towards
 the origin servers in the group, notifications from that hop are
 forwarded back to the (previous hop proxy closer to the) origin
 client, as defined in Section 8.2.

Tiloca & Dijk Expires 3 March 2024 [Page 34]

Internet-Draft Proxy Operations for Group Communication August 2023

 * The proxy SHOULD regularly verify that the (previous hop proxy
 closer to the) origin client is still interested in receiving
 observe notifications for a group observation. To this end, the
 proxy can rely on the same approach defined in Section 4.5 of
 [RFC7641].

9. HTTP-CoAP Proxies

 This section defines the components needed to use the signaling
 protocol specified in this document, when an HTTP client wishes to
 send a group request to the servers of a CoAP group, via an HTTP-CoAP
 cross-proxy.

 The following builds on the mapping of the CoAP request/response
 model to HTTP and vice versa as defined in Section 10 of [RFC7252],
 as well as on the additional details about the HTTP-CoAP mapping
 defined in [RFC8075].

 Furthermore, the components defined in Section 11 of [RFC8613] are
 also used to map and transport OSCORE-protected messages over HTTP.
 This allows an HTTP client to use Group OSCORE end-to-end with the
 servers in the CoAP group.

9.1. The HTTP Multicast-Timeout Header Field

 The HTTP Multicast-Timeout header field (see Section 11.3) is used
 for carrying the content otherwise specified in the CoAP Multicast-
 Timeout Option defined in Section 2.

 Using the Augmented Backus-Naur Form (ABNF) notation of [RFC5234] and
 including the core ABNF syntax rule DIGIT (decimal digits) defined by
 that specification, the HTTP Multicast-Timeout header field value is
 as follows.

 Multicast-Timeout = *DIGIT

 When translating a CoAP message into an HTTP message, the HTTP
 Multicast-Timeout header field is set with the content of the CoAP
 Multicast-Timeout Option, or is left empty in case the option is
 empty.

 The same applies in the opposite direction, when translating an HTTP
 message into a CoAP message.

Tiloca & Dijk Expires 3 March 2024 [Page 35]

Internet-Draft Proxy Operations for Group Communication August 2023

9.2. The HTTP Response-Forwarding Header Field

 The HTTP Response-Forwarding header field (see Section 11.3) is used
 for carrying the content otherwise specified in the CoAP Response-
 Forwarding Option defined in Section 3.

 Using the Uniform Resource Identifier (URI) syntax components defined
 in [RFC3986], the HTTP Response-Forwarding header field value is as
 follows.

 scheme = <scheme, see Section 3.1 of [RFC3986]>

 authority = <authority, see Section 3.2 of [RFC3986]>

 Response-Forwarding = scheme "://" authority

 In particular:

 * The scheme component indicates the URI scheme otherwise specified
 in the CoAP Response-Forwarding Option, as per the ’tp_id’ element
 of the ’tp_info’ array (see Section 3). That is, the ’tp_id’
 element with integer value 1 results in the scheme "coap".

 * The authority component indicates the URI authority otherwise
 specified in the CoAP Response-Forwarding Option, as per the
 ’srv_host’ and ’srv_port’ elements of the ’tp_info’ array (see
 Section 3).

 When translating a CoAP message into an HTTP message, the HTTP
 Response-Forwarding header field is set to the URI specified in the
 CoAP Response-Forwarding Option, as per the rules defined above. In
 particular, consistently with what is defined in Section 3:

 * If the ’srv_port’ element of the ’tp_info’ array is present and
 specifies the CBOR simple value "null" (0xf6), the URI authority
 of the header field includes the same port number that was
 specified in the group URI where the group request was forwarded.

 * If the ’srv_port’ element of the ’tp_info’ array is not present,
 the URI authority of the header field includes the default port
 number for the transport protocol specified by the ’tp_id’ element
 of the ’tp_info’ array, as per Section 3.2.

 When translating an HTTP message into a CoAP message, the CoAP
 Response-Forwarding Option is set to the URI specified by the HTTP
 Response-Forwarding header field. In particular, the URI is encoded
 according to the format specified in Section 3.

Tiloca & Dijk Expires 3 March 2024 [Page 36]

Internet-Draft Proxy Operations for Group Communication August 2023

9.3. The HTTP Group-ETag Header Field

 The HTTP Group-ETag header field (see Section 11.3) is used for
 carrying the content otherwise specified in the CoAP Group-ETag
 Option defined in Section 7.3.

 Using the Augmented Backus-Naur Form (ABNF) notation of [RFC5234] and
 including the following core ABNF syntax rules defined by that
 specification: ALPHA (letters) and DIGIT (decimal digits), the HTTP
 Group-ETag header field value is as follows.

 group-etag-char = ALPHA / DIGIT / "-" / "_"

 Group-ETag = 2*group-etag-char

 When translating a CoAP message into an HTTP message, the HTTP Group-
 ETag header field is set to the value of the CoAP Group-ETag Option
 in base64url (see Section 5 of [RFC4648]) encoding without padding.
 Implementation notes for this encoding are given in Appendix C of
 [RFC7515].

 When translating an HTTP message into a CoAP message, the CoAP Group-
 ETag Option is set to the value of the HTTP Group-ETag header field
 decoded from base64url (see Section 5 of [RFC4648]) without padding.
 Implementation notes for this encoding are given in Appendix C of
 [RFC7515].

9.4. Request Sending at the Client

 The client proceeds according to the following steps.

 1. The client prepares an HTTP request to send to the proxy via IP
 unicast, and to be forwarded by the proxy to the targeted group
 of CoAP servers over IP multicast. With reference to Section 5
 of [RFC8075], the request is addressed to a Hosting HTTP URI,
 such that the proxy can extract the Target CoAP URI as the group
 URI where to forward the request.

 2. The client determines the amount of time T that it is fine to
 wait for a response to the request from the proxy. Then, the
 client determines the amount of time T’ < T, where the difference
 (T - T’) should be at least the expected worst-case round-trip
 time between the client and the proxy.

 3. If Group OSCORE is used end-to-end between the client and the
 servers, the client translates the HTTP request into a CoAP
 request, as per [RFC8075]. Then, the client protects the
 resulting CoAP request by using Group OSCORE, as defined in

Tiloca & Dijk Expires 3 March 2024 [Page 37]

Internet-Draft Proxy Operations for Group Communication August 2023

 [I-D.ietf-core-oscore-groupcomm]. Finally, the protected CoAP
 request is mapped to HTTP as defined in Section 11.2 of
 [RFC8613]. Later on, the resulting HTTP request MUST be sent in
 compliance with the rules in Section 11.1 of [RFC8613].

 4. The client includes the HTTP Multicast-Timeout header field in
 the request, specifying T’ as its value. The client can specify
 T’ = 0, thus indicating to be not interested in receiving
 responses from the origin servers through the proxy.

 5. If the client wishes to revalidate responses to a previous group
 request from the corresponding cache entries at the proxy (see
 Section 7.3), the client includes one or multiple HTTP Group-ETag
 header fields in the request (see Section 9.3), each specifying
 an entity-tag value like they would in a corresponding CoAP Group
 E-Tag option.

 6. The client sends the request to the proxy, as a unicast HTTP
 message. In particular, the client protects the request
 according to the security association it has with the proxy.

9.5. Request Processing at the Proxy

 The proxy translates the HTTP request to a CoAP request, as per
 [RFC8075]. The additional rules for HTTP messages with the HTTP
 Multicast-Timeout header field and HTTP Group-ETag header field are
 defined in Section 9.1 and Section 9.3, respectively.

 Once translated the HTTP request into a CoAP request, the proxy MUST
 perform the steps defined in Section 5.2. If the proxy supports
 caching of responses, it can serve the unicast request also by using
 cached responses as per Section 7, considering the CoAP request above
 as the potentially matching request.

 In addition, in case the HTTP Multicast-Timeout header field had
 value 0, the proxy replies to the client with an HTTP response with
 status code 204 (No Content), right after forwarding the group
 request to the group of servers.

9.6. Response Processing at the Proxy

 Upon receiving a CoAP response matching with the group request before
 the amount of time T’ > 0 has elapsed, the proxy includes the
 Response-Forwarding Option in the response, as per step 1 of
 Section 5.4.1. Then, the proxy translates the CoAP response to an
 HTTP response, as per Section 10.1 of [RFC7252] and [RFC8075], as
 well as Section 11.2 of [RFC8613] if Group OSCORE is used end-to-end
 between the client and servers. The additional rules for CoAP

Tiloca & Dijk Expires 3 March 2024 [Page 38]

Internet-Draft Proxy Operations for Group Communication August 2023

 messages specifying the Response-Forwarding Option are defined in
 Section 9.2.

 After that, the proxy stores the resulting HTTP response until the
 timeout with original value T’ > 0 expires. If, before then, the
 proxy receives another response to the same group request from the
 same CoAP server, the proxy performs the steps above, and stores the
 resulting HTTP response by superseding the currently stored one from
 that server.

 When the timout expires, if no responses have been received from the
 servers, the proxy replies to the client’s original unicast group
 request with an HTTP response with status code 204 (No Content).

 Otherwise, the proxy relays to the client all the collected and
 stored HTTP responses to the group request, according to the
 following steps.

 1. The proxy prepares a single HTTP batch response, which MUST have
 200 (OK) status code and MUST have its HTTP Content-Type header
 field with value multipart/mixed [RFC2046].

 2. For each stored individual HTTP response RESP, the proxy prepares
 a corresponding batch part to include in the HTTP batch response,
 such that:

 * The batch part has its own HTTP Content-Type header field with
 value application/http [RFC9112].

 * The body of the batch part is the individual HTTP response
 RESP, including its status code, headers and body.

 3. The proxy includes each batch part prepared at step 2 in the HTTP
 batch response.

 4. The proxy replies to the client’s original unicast group request,
 by sending the HTTP batch response. When doing so, the proxy
 protects the response according to the security association it
 has with the client.

9.7. Response Processing at the Client

 When it receives an HTTP response as a reply to the original unicast
 group request, the client proceeds as follows.

 1. The client decrypts the response, according to the security
 association it has with the proxy.

Tiloca & Dijk Expires 3 March 2024 [Page 39]

Internet-Draft Proxy Operations for Group Communication August 2023

 2. From the resulting HTTP batch response, the client extracts the
 different batch parts.

 3. From each of the extracted batch parts, the client extracts the
 body as one of the individual HTTP response RESP.

 4. For each individual HTTP response RESP, the client performs the
 following steps.

 * If Group OSCORE is used end-to-end between the client and
 servers, the client translates the HTTP response RESP into a
 CoAP response, as per Section 11.3 of [RFC8613]. Then, the
 client decrypts the resulting CoAP response by using Group
 OSCORE, as defined in [I-D.ietf-core-oscore-groupcomm].
 Finally, the decrypted CoAP response is mapped to HTTP as per
 Section 10.2 of [RFC7252] as well as [RFC8075]. The
 additional rules for HTTP messages with the HTTP Response-
 Forwarding header field are defined in Section 9.2.

 * The client delivers to the application the individual HTTP
 response.

 Similarly to step 3 in Section 5.5.1, the client identifies the
 origin server that originated the CoAP response correspoding to
 the HTTP response RESP, by means of its addressing information
 specified as value of the HTTP Response-Forwarding header field.
 This allows the client to distinguish different individual HTTP
 responses as corresponding to different CoAP responses from the
 servers in the CoAP group.

9.8. Example

 The examples in this section build on Section 5.6, with the
 difference that the origin client C is an HTTP client and the proxy P
 is an HTTP-CoAP cross-proxy. The examples are simply illustrative
 and are not to be intended as a test vector.

 The following is an example of unicast group request sent by C to P.
 The URI mapping and notation are based on the "Simple Form" defined
 in Section 5.4.1 of [RFC8075].

 POST https://proxy.url/hc/?target_uri=coap://G_ADDR:G_PORT/ HTTP/1.1
 Content-Length: <REQUEST_TOTAL_CONTENT_LENGTH>
 Content-Type: text/plain
 Multicast-Timeout: 60

 Body: Do that!

Tiloca & Dijk Expires 3 March 2024 [Page 40]

Internet-Draft Proxy Operations for Group Communication August 2023

 The following is an example of HTTP batch response sent by P to C, as
 a reply to the client’s original unicast group request.

 HTTP/1.1 200 OK
 Content-Length: <BATCH_RESPONSE_TOTAL_CONTENT_LENGTH>
 Content-Type: multipart/mixed; boundary=batch_foo_bar

 --batch_foo_bar
 Content-Type: application/http

 HTTP/1.1 200 OK
 Content-Type: text/plain
 Content-Length: <INDIVIDUAL_RESPONSE_1_CONTENT_LENGTH>
 Response-Forwarding: coap://S1_ADDR:G_PORT

 Body: Done!
 --batch_foo_bar
 Content-Type: application/http

 HTTP/1.1 200 OK
 Content-Type: text/plain
 Content-Length: <INDIVIDUAL_RESPONSE_2_CONTENT_LENGTH>
 Response-Forwarding: coap://S2_ADDR:S2_PORT

 Body: More than done!
 --batch_foo_bar--

9.9. Streamed Delivery of Responses to the Client

 [TODO

 The proxy might still be able to forward back individual responses to
 the client in a streamed fashion.

 Individual responses can be forwarded back one by one as they come
 (like a CoAP-to-CoAP proxy does), or as soon as a certain amount of
 them have been received from the servers.

 This can be achieved by combining the Content-Type multipart/mixed
 used in the previous sections with the Transfer-Coding "chunked"
 specified in RFC 9112.

 The above applies to HTTP 1.1, while HTTP/2 has its own mechanisms
 for data streaming.

]

Tiloca & Dijk Expires 3 March 2024 [Page 41]

Internet-Draft Proxy Operations for Group Communication August 2023

9.10. Reverse-Proxies

 In case an HTTP-to-CoAP proxy acts specifically as a reverse-proxy,
 the same principles defined in Section 6 applies, as specified below.

9.10.1. Processing on the Client Side

 If an HTTP client sends a request intended to a group of servers and
 is aware of actually communicating with a reverse-proxy, then the
 client SHOULD perform the steps defined in Section 9.4. In
 particular, this results in a request sent to the proxy including a
 Multicast-Timeout header field.

 An exception is the case where the reverse-proxy has a pre-configured
 timeout value T_PROXY, as the default timeout value to use for when
 to stop accepting responses from the servers, after the reception of
 the original unicast request from the client. In this case, a client
 aware of such a configuration MAY omit the Multicast-Timeout header
 field in the request sent to the proxy.

 The client processes the HTTP response forwarded back by the proxy as
 defined in Section 9.7.

9.10.2. Processing on the Proxy Side

 If the proxy receives a request and determines that it should be
 forwarded to a group of servers over IP multicast, then the same as
 defined in Section 9.5 applies, with the following difference.

 Once translated the HTTP request into a CoAP request, the proxy
 performs what is defined in Section 6.2. Note that, in this case,
 the condition COND_2 always holds, since the proxy is going to send
 to the client at most one response, i.e., the HTTP batch response
 (see Section 9.6).

 The proxy processes the HTTP response sent to the client as defined
 in Section 9.6.

10. Security Considerations

 The security considerations from [RFC7252][I-D.ietf-core-groupcomm-bi
 s][RFC8613][I-D.ietf-core-oscore-groupcomm] hold for this document.

 When a chain of proxies is used (see Section 8), the secure
 communication between any two adjacent hops is independent.

Tiloca & Dijk Expires 3 March 2024 [Page 42]

Internet-Draft Proxy Operations for Group Communication August 2023

 When Group OSCORE is used for end-to-end secure group communication
 between the origin client and the origin servers, this security
 association is unaffected by the possible presence of a proxy or a
 chain of proxies.

 Furthermore, the following additional considerations hold.

10.1. Client Authentication

 As per the requirement REQ2 (see Section 4), the client has to
 authenticate to the proxy when sending a group request to forward.
 This leverages an established security association between the client
 and the proxy, that the client uses to protect the group request,
 before sending it to the proxy.

 If the group request is (also) protected end-to-end between the
 client and the servers using the group mode of Group OSCORE, the
 proxy can act as external signature checker (see Section 8.5 of
 [I-D.ietf-core-oscore-groupcomm]) and authenticate the client by
 successfully verifying the signature embedded in the group request.
 However, this requires that, for each client to authenticate, the
 proxy stores the authentication credential and public key included
 therin used by that client in the OSCORE group. This in turn would
 require a form of active synchronization between the proxy and the
 Group Manager for that group [I-D.ietf-core-oscore-groupcomm].

 Nevertheless, the client and the proxy SHOULD still rely on a full-
 fledged pairwise secure association. In addition to ensuring the
 integrity of group requests sent to the proxy (see Section 10.2,
 Section 10.3 and Section 10.4), this prevents the proxy from
 forwarding replayed group requests with a valid signature, as
 possibly injected by an active, on-path adversary.

 The same considerations apply when a chain of proxies is used (see
 Section 8), with each proxy but the last one in the chain acting as
 client with the next hop towards the origin servers.

10.2. Multicast-Timeout Option

 The Multicast-Timeout Option is of class U for OSCORE [RFC8613].
 Hence, also when Group OSCORE is used between the client and the
 servers [I-D.ietf-core-oscore-groupcomm], a proxy is able to access
 the option value and retrieve the timeout value T’, as well as to
 remove the option altogether before forwarding the group request to
 the servers. When a chain of proxies is used (see Section 8), this
 also allows each proxy but the last one in the chain to update the
 option value, as an indication for the next hop towards the origin
 servers (see Section 8.1).

Tiloca & Dijk Expires 3 March 2024 [Page 43]

Internet-Draft Proxy Operations for Group Communication August 2023

 The security association between the client and the proxy MUST
 provide message integrity, so that further intermediaries between the
 two as well as on-path active adversaries are not able to remove the
 option or alter its content, before the group request reaches the
 proxy. Removing the option would otherwise result in not forwarding
 the group request to the servers. Instead, altering the option
 content would result in the proxy accepting and forwarding back
 responses for an amount of time different than the one actually
 indicated by the client.

 The security association between the client and the proxy SHOULD also
 provide message confidentiality. Otherwise, any further
 intermediaries between the two as well as any on-path passive
 adversaries would be able to simply access the option content, and
 thus learn for how long the client is willing to receive responses
 from the servers in the group via the proxy. This may in turn be
 used to perform a more efficient, selective suppression of responses
 from the servers.

 When the client protects the unicast request sent to the proxy using
 OSCORE (see [I-D.tiloca-core-oscore-capable-proxies]) and/or (D)TLS,
 both message integrity and message confidentiality are achieved in
 the leg between the client and the proxy.

 The same considerations above about security associations apply when
 a chain of proxies is used (see Section 8), with each proxy but the
 last one in the chain acting as client with the next hop towards the
 origin servers.

10.3. Response-Forwarding Option

 The Response-Forwarding Option is of class U for OSCORE [RFC8613].
 Hence, also when Group OSCORE is used between the client and the
 servers [I-D.ietf-core-oscore-groupcomm], the proxy that has
 forwarded the group request to the servers is able to include the
 option into a server response, before forwarding this response back
 to the (previous hop proxy closer to the) origin client.

 Since the security association between the client and the proxy
 provides message integrity, any further intermediaries between the
 two as well as any on-path active adversaries are not able to
 undetectably remove the Response-Forwarding Option from a forwarded
 server response. This ensures that the client can correctly
 distinguish the different responses and identify their corresponding
 origin server.

Tiloca & Dijk Expires 3 March 2024 [Page 44]

Internet-Draft Proxy Operations for Group Communication August 2023

 When the proxy protects the response forwarded back to the client
 using OSCORE (see [I-D.tiloca-core-oscore-capable-proxies]) and/or
 (D)TLS, message integrity is achieved in the leg between the client
 and the proxy.

 The same considerations above about security associations apply when
 a chain of proxies is used (see Section 8), with each proxy but the
 last one in the chain acting as client with the next hop towards the
 origin servers.

10.4. Group-ETag Option

 The Group-ETag Option is of class U for OSCORE [RFC8613]. Hence,
 also when Group OSCORE is used between the client and the servers
 [I-D.ietf-core-oscore-groupcomm], a proxy is able to access the
 option value and use it to possibly perform response revalidation at
 its cache entries associated with the servers in the CoAP group, as
 well as to remove the option altogether before forwarding the group
 request to the servers. When a chain of proxies is used (see
 Section 8), this also allows each proxy but the last one in the chain
 to update the option value, to possibly ask the next hop towards the
 origin servers to perform response revalidation at its cache entries.

 The security association between the client and the proxy MUST
 provide message integrity, so that further intermediaries between the
 two as well as on-path active adversaries are not able to remove the
 option or alter its content, before the group request reaches the
 proxy. Removing the option would otherwise result in the proxy not
 performing response revalidation at its cache entries associated with
 the servers in the CoAP group, even though that was what the client
 asked for.

 Altering the option content in a group request would result in the
 proxy replying with 2.05 (Content) responses conveying the full
 resource representations from its cache entries, rather than with a
 single 2.03 (Valid) response. Instead, altering the option content
 in a 2.03 (Valid) or 2.05 (Content) response would result in the
 client wrongly believing that the already stored or the just received
 representation, respectively, is also the current one, as per the
 entity value of the tampered Group-ETag Option.

 The security association between the client and the proxy SHOULD also
 provide message confidentiality. Otherwise, any further
 intermediaries between the two as well as any on-path passive
 adversaries would be able to simply access the option content, and
 thus learn the rate and pattern according to which the group resource
 in question changes over time, as inferable from the entity values
 read over time.

Tiloca & Dijk Expires 3 March 2024 [Page 45]

Internet-Draft Proxy Operations for Group Communication August 2023

 When the client protects the unicast request sent to the proxy using
 OSCORE (see [I-D.tiloca-core-oscore-capable-proxies]) and/or (D)TLS,
 both message integrity and message confidentiality are achieved in
 the leg between the client and the proxy.

 The same considerations above about security associations apply when
 a chain of proxies is used (see Section 8), with each proxy but the
 last one in the chain acting as client with the next hop towards the
 origin servers.

 When caching of Group OSCORE secured responses is enabled at the
 proxy, the same as defined in Section 7 applies, with respect to
 cache entries and the way they are maintained.

10.5. HTTP-to-CoAP Proxies

 Consistently with what is discussed in Section 10.1, an HTTP client
 has to authenticate to the HTTP-to-CoAP proxy, and they SHOULD rely
 on a full-fledged pairwise secure association. This can rely on a
 TLS [RFC8446] channel as also recommended in Section 12.1 of
 [RFC8613] for when OSCORE is used with HTTP, or on a pairwise OSCORE
 [RFC8613] Security Context between the client and the proxy as
 defined in [I-D.tiloca-core-oscore-capable-proxies].

 [TODO

 Revisit security considerations from [RFC8075]

]

11. IANA Considerations

 This document has the following actions for IANA.

11.1. CoAP Option Numbers Registry

 IANA is asked to enter the following option numbers to the "CoAP
 Option Numbers" registry within the "CoRE Parameters" registry group.

 +--------+---------------------+-------------------+
 | Number | Name | Reference |
 +--------+---------------------+-------------------+
 | TBD1 | Multicast-Timeout | [[this document]] |
 +--------+---------------------+-------------------+
 | TBD2 | Response-Forwarding | [[this document]] |
 +--------+---------------------+-------------------+
 | TBD3 | Group-ETag | [[this document]] |
 +--------+---------------------+-------------------+

Tiloca & Dijk Expires 3 March 2024 [Page 46]

Internet-Draft Proxy Operations for Group Communication August 2023

11.2. CoAP Transport Information Registry

 IANA is asked to add the following entries to the "CoAP Transport
 Information" registry defined in Section 16.5 of
 [I-D.ietf-core-observe-multicast-notifications].

 +------------+-------------+-------+----------+-----------+-----------+
 | Transport | Description | Value | Srv Addr | Req Info | Reference |
 | Protocol | | | | | |
 +------------+-------------+-------+----------+-----------+-----------+
UDP	UDP with	2	tp_id	token	[This
secured	DTLS is		srv_host	cli_host	document]
with DTLS	used as per		srv_port	?cli_port	
	RFC8323				
+------------+-------------+-------+----------+-----------+-----------+					
TCP	TCP is used	3	tp_id	token	[This
	as per		srv_host	cli_host	document]
	RFC8323		srv_port	?cli_port	
+------------+-------------+-------+----------+-----------+-----------+					
TCP	TCP with	4	tp_id	token	[This
secured	TLS is		srv_host	cli_host	document]
with TLS	used as per		srv_port	?cli_port	
	RFC8323				
+------------+-------------+-------+----------+-----------+-----------+					
WebSockets	WebSockets	5	tp_id	token	[This
	are used as		srv_host	cli_host	document]
	per RFC8323		srv_port	?cli_port	
+------------+-------------+-------+----------+-----------+-----------+					
WebSockets	WebSockets	6	tp_id	token	[This
secured	with TLS		srv_host	cli_host	document]
with TLS	are used as		srv_port	?cli_port	
	per RFC8323				
 +------------+-------------+-------+----------+-----------+-----------+

11.3. Header Field Registrations

 IANA is asked to enter the following HTTP header fields to the
 "Message Headers" registry.

Tiloca & Dijk Expires 3 March 2024 [Page 47]

Internet-Draft Proxy Operations for Group Communication August 2023

 +---------------------+----------+----------+-----------+
 | Header Field Name | Protocol | Status | Reference |
 +---------------------+----------+----------+-----------+
 | Multicast-Timeout | http | standard | [This |
 | | | | document] |
 +---------------------+----------+----------+-----------+
 | Response-Forwarding | http | standard | [This |
 | | | | document] |
 +---------------------+----------+----------+-----------+
 | Group-ETag | http | standard | [This |
 | | | | document] |
 +---------------------+----------+----------+-----------+

12. References

12.1. Normative References

 [I-D.ietf-core-groupcomm-bis]
 Dijk, E., Wang, C., and M. Tiloca, "Group Communication
 for the Constrained Application Protocol (CoAP)", Work in
 Progress, Internet-Draft, draft-ietf-core-groupcomm-bis-
 09, 10 July 2023, <https://datatracker.ietf.org/doc/html/
 draft-ietf-core-groupcomm-bis-09>.

 [I-D.ietf-core-observe-multicast-notifications]
 Tiloca, M., Höglund, R., Amsüss, C., and F. Palombini,
 "Observe Notifications as CoAP Multicast Responses", Work
 in Progress, Internet-Draft, draft-ietf-core-observe-
 multicast-notifications-06, 26 April 2023,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 observe-multicast-notifications-06>.

 [I-D.ietf-core-oscore-groupcomm]
 Tiloca, M., Selander, G., Palombini, F., Mattsson, J. P.,
 and J. Park, "Group Object Security for Constrained
 RESTful Environments (Group OSCORE)", Work in Progress,
 Internet-Draft, draft-ietf-core-oscore-groupcomm-19, 10
 July 2023, <https://datatracker.ietf.org/doc/html/draft-
 ietf-core-oscore-groupcomm-19>.

 [RFC2046] Freed, N. and N. Borenstein, "Multipurpose Internet Mail
 Extensions (MIME) Part Two: Media Types", RFC 2046,
 DOI 10.17487/RFC2046, November 1996,
 <https://www.rfc-editor.org/rfc/rfc2046>.

Tiloca & Dijk Expires 3 March 2024 [Page 48]

Internet-Draft Proxy Operations for Group Communication August 2023

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/rfc/rfc5234>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7252>.

 [RFC7641] Hartke, K., "Observing Resources in the Constrained
 Application Protocol (CoAP)", RFC 7641,
 DOI 10.17487/RFC7641, September 2015,
 <https://www.rfc-editor.org/rfc/rfc7641>.

 [RFC8075] Castellani, A., Loreto, S., Rahman, A., Fossati, T., and
 E. Dijk, "Guidelines for Mapping Implementations: HTTP to
 the Constrained Application Protocol (CoAP)", RFC 8075,
 DOI 10.17487/RFC8075, February 2017,
 <https://www.rfc-editor.org/rfc/rfc8075>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8323] Bormann, C., Lemay, S., Tschofenig, H., Hartke, K.,
 Silverajan, B., and B. Raymor, Ed., "CoAP (Constrained
 Application Protocol) over TCP, TLS, and WebSockets",
 RFC 8323, DOI 10.17487/RFC8323, February 2018,
 <https://www.rfc-editor.org/rfc/rfc8323>.

Tiloca & Dijk Expires 3 March 2024 [Page 49]

Internet-Draft Proxy Operations for Group Communication August 2023

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

 [RFC8613] Selander, G., Mattsson, J., Palombini, F., and L. Seitz,
 "Object Security for Constrained RESTful Environments
 (OSCORE)", RFC 8613, DOI 10.17487/RFC8613, July 2019,
 <https://www.rfc-editor.org/rfc/rfc8613>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8949>.

 [RFC9112] Fielding, R., Ed., Nottingham, M., Ed., and J. Reschke,
 Ed., "HTTP/1.1", STD 99, RFC 9112, DOI 10.17487/RFC9112,
 June 2022, <https://www.rfc-editor.org/rfc/rfc9112>.

12.2. Informative References

 [I-D.amsuess-core-cachable-oscore]
 Amsüss, C. and M. Tiloca, "Cacheable OSCORE", Work in
 Progress, Internet-Draft, draft-amsuess-core-cachable-
 oscore-07, 10 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-amsuess-core-
 cachable-oscore-07>.

 [I-D.bormann-coap-misc]
 Bormann, C. and K. Hartke, "Miscellaneous additions to
 CoAP", Work in Progress, Internet-Draft, draft-bormann-
 coap-misc-27, 14 November 2014,
 <https://datatracker.ietf.org/doc/html/draft-bormann-coap-
 misc-27>.

 [I-D.ietf-ace-key-groupcomm-oscore]
 Tiloca, M., Park, J., and F. Palombini, "Key Management
 for OSCORE Groups in ACE", Work in Progress, Internet-
 Draft, draft-ietf-ace-key-groupcomm-oscore-16, 6 March
 2023, <https://datatracker.ietf.org/doc/html/draft-ietf-
 ace-key-groupcomm-oscore-16>.

Tiloca & Dijk Expires 3 March 2024 [Page 50]

Internet-Draft Proxy Operations for Group Communication August 2023

 [I-D.tiloca-core-oscore-capable-proxies]
 Tiloca, M. and R. Höglund, "OSCORE-capable Proxies", Work
 in Progress, Internet-Draft, draft-tiloca-core-oscore-
 capable-proxies-07, 10 July 2023,
 <https://datatracker.ietf.org/doc/html/draft-tiloca-core-
 oscore-capable-proxies-07>.

 [I-D.tiloca-core-oscore-discovery]
 Tiloca, M., Amsüss, C., and P. Van der Stok, "Discovery of
 OSCORE Groups with the CoRE Resource Directory", Work in
 Progress, Internet-Draft, draft-tiloca-core-oscore-
 discovery-13, 8 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-tiloca-core-
 oscore-discovery-13>.

 [RFC6347] Rescorla, E. and N. Modadugu, "Datagram Transport Layer
 Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347,
 January 2012, <https://www.rfc-editor.org/rfc/rfc6347>.

 [RFC7515] Jones, M., Bradley, J., and N. Sakimura, "JSON Web
 Signature (JWS)", RFC 7515, DOI 10.17487/RFC7515, May
 2015, <https://www.rfc-editor.org/rfc/rfc7515>.

 [RFC7967] Bhattacharyya, A., Bandyopadhyay, S., Pal, A., and T.
 Bose, "Constrained Application Protocol (CoAP) Option for
 No Server Response", RFC 7967, DOI 10.17487/RFC7967,
 August 2016, <https://www.rfc-editor.org/rfc/rfc7967>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC9147] Rescorla, E., Tschofenig, H., and N. Modadugu, "The
 Datagram Transport Layer Security (DTLS) Protocol Version
 1.3", RFC 9147, DOI 10.17487/RFC9147, April 2022,
 <https://www.rfc-editor.org/rfc/rfc9147>.

Appendix A. Examples with Reverse-Proxy

 The examples in this section refer to the following actors.

 * One origin client C, with address C_ADDR and port number C_PORT.

 * One proxy P, with address P_ADDR and server port number P_PORT.

 * Two origin servers S1 and S2, where the server Sx has address
 Sx_ADDR and port number Sx_PORT.

Tiloca & Dijk Expires 3 March 2024 [Page 51]

Internet-Draft Proxy Operations for Group Communication August 2023

 The origin servers are members of a CoAP group with IP multicast
 address G_ADDR and port number G_PORT. Also, the origin servers are
 members of a same application group, and share the same resource /r.

 The communication between C and P is based on CoAP over TCP, as per
 [RFC8323]. The group communication between P and the origin servers
 is based on CoAP over UDP and IP multicast, as per
 [I-D.ietf-core-groupcomm-bis].

 Finally, ’bstr(X)’ denotes a CBOR byte string where its value is the
 byte serialization of X.

A.1. Example 1

 The example shown in Figure 5 considers a reverse-proxy P that
 provides access to both the whole group of servers {S1,S2} and also
 to each of those servers individually. The client C may not have a
 way to reach the servers directly (e.g., P is acting as a firewall).
 After the client C has received two responses to its group request
 sent via the proxy, it selects one server (S1) and requests another
 resource from it in unicast, again via the proxy.

 In particular:

 * The client C encodes the group URI ’coap://group1.com/r’ within
 the URI path of its request to P. This encoding follows the
 "default mapping" defined in Section 5.3 of [RFC8075] for HTTP-to-
 CoAP proxies, but now applied to a CoAP-to-CoAP proxy. The proxy
 P decodes the embedded group URI from the request.

 * The client’s request URI path starts with ’/cp’, which is the
 resource on P that provides the CoAP proxy function. Since C in
 this example constructs the URI in its request including this
 resource ’/cp’, it is aware that is requesting to a proxy.

 * Because the embedded group URI omits the CoAP port, P infers
 G_PORT to be the default port 5683 for the ’coap’ scheme.

 * The hostname ’p.example.com’ resolves to the proxy’s unicast IPv6
 address P_ADDR.

 * The hostname ’group1.com’ resolves to the IPv6 multicast address
 G_ADDR. The proxy P performs this resolution upon receiving the
 request from C. P constructs the group request and sends it to
 the CoAP group at G_ADDR:G_PORT.

Tiloca & Dijk Expires 3 March 2024 [Page 52]

Internet-Draft Proxy Operations for Group Communication August 2023

 * Typically S1_PORT and S2_PORT will be equal to G_PORT, but a
 server Sx is allowed to reply to the multicast request from
 another port number not equal to G_PORT. For this reason, the
 notation Sx_PORT is used.

 Note that this type of reverse-proxy only requires one unicast IP
 address (P_ADDR) for the proxy, so it is well scalable to a large
 number of servers Sx. The type of reverse-proxy in the example in
 Appendix A.2 requires an additional IP address for each server Sx and
 also for each CoAP group that it supports.

 C P S1 S2
----------------------------->	/* C embeds the	
Src: C_ADDR:C_PORT	group URI into its	
Dst: p.example.com:P_PORT	request to the	
Uri-Path:	proxy */	
/cp/coap://group1.com/r		
Multicast-Timeout: 60		
	Src: P_ADDR:P_PORT	
	Dst: G_ADDR:G_PORT	
	Uri-Path: /r	
	---------------+----->	
	\	
	+----------------->	
	/* t = 0 : P starts	
	accepting responses	
	for this request */	
	<---------------------	
	Src: S1_ADDR:S1_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Src: p.example.com:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[3, /*CoAP over TCP*/		
#6.260(bstr(S1_ADDR)),		
S1_PORT		
]		
}		

Tiloca & Dijk Expires 3 March 2024 [Page 53]

Internet-Draft Proxy Operations for Group Communication August 2023

	<-----------------------------------	
	Src: S2_ADDR:S2_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Src: p.example.com:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[3, /*CoAP over TCP*/		
#6.260(bstr(S2_ADDR)),		
S2_PORT		
]		
}		
/* At t = 60, P stops accepting		
responses for this request */		
----------------------------->	/* Request intended	
Src: C_ADDR:C_PORT	only to S1, via	
Dst: p.example.com:P_PORT	proxy P */	
Uri-Path: /cp/coap://		
[S1_ADDR]:S1_PORT/r2		
	Src: P_ADDR:P_PORT	
	Dst: S1_ADDR:S1_PORT	
	Uri-Path: /r2	
	--------------------->	
	<---------------------	
	Src: S1_ADDR:S1_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Src: P_ADDR:P_PORT		
Dst: C_ADDR:C_PORT		

 Figure 5: Workflow example with reverse-proxy that processes an
 embedded group URI in a client’s request

Tiloca & Dijk Expires 3 March 2024 [Page 54]

Internet-Draft Proxy Operations for Group Communication August 2023

A.2. Example 2

 The example shown in Figure 6 considers a reverse-proxy that stands
 in for both the whole group of servers {S1,S2} and for each of those
 servers Sx. The client C may not have a way to reach the servers
 directly (e.g., P is acting as a firewall). After the client C has
 received two responses to its group request sent via the proxy, it
 selects one server (S1) and requests at a later time the same
 resource from it in unicast, again via the proxy.

 In particular:

 * The hostname ’group1.com’ resolves to the unicast address P_ADDR.
 The proxy forwards an incoming request to that address, for any
 resource i.e., URI path, towards the CoAP group at G_ADDR:G_PORT
 leaving the URI path unchanged.

 * The address Dx_ADDR and port number Dx_PORT are used by the proxy,
 which forwards an incoming request to that address towards the
 server at Sx_ADDR:Sx_PORT. The different Dx_ADDR are effectively
 ’proxy IP addresses’ used to provide access to the servers.

 Note that this type of reverse-proxy implementation requires the
 proxy to use (potentially) a large number of distinct IP addresses,
 hence it is not very scalable. Instead, the type of reverse-proxy
 shown in the example in Appendix A.1 uses only one IPv6 unicast
 address to provide access to all servers and all CoAP groups.

 C P S1 S2
----------------------------->	/* C is not aware	
Src: C_ADDR:C_PORT	that P is in fact	
Dst: group1.com:P_PORT	a reverse-proxy */	
Uri-Path: /r		
<-----------------------------		
Src: group1.com:P_PORT		
Dst: C_ADDR:C_PORT		
4.00 Bad Request		
Multicast-Timeout: (empty)		
Payload: "Please use		
Multicast-Timeout"		
----------------------------->		
Src: C_ADDR:C_PORT		
Dst: group1.com:P_PORT		
Multicast-Timeout: 60		
Uri-Path: /r		

Tiloca & Dijk Expires 3 March 2024 [Page 55]

Internet-Draft Proxy Operations for Group Communication August 2023

	Src: P_ADDR:P_PORT	
	Dst: G_ADDR:G_PORT	
	Uri-Path: /r	
	---------------+----->	
	\	
	+----------------->	
	/* t = 0 : P starts	
	accepting responses	
	for this request */	
	<---------------------	
	Src: S1_ADDR:S1_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Src: group1.com:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[3, /*CoAP over TCP*/		
#6.260(bstr(D1_ADDR)),		
D1_PORT		
]		
}		
	<-----------------------------------	
	Src: S2_ADDR:S2_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Src: group1.com:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[3, /*CoAP over TCP*/		
#6.260(bstr(D2_ADDR)),		
D2_PORT		
]		
}		
/* At t = 60, P stops accepting		
responses for this request */		
 /* time passes */

Tiloca & Dijk Expires 3 March 2024 [Page 56]

Internet-Draft Proxy Operations for Group Communication August 2023

----------------------------->	/* Request intended	
Src: C_ADDR:C_PORT	only to S1 for same	
Dst: D1_ADDR:D1_PORT	resource /r */	
Uri-Path: /r		
	Src: P_ADDR:P_PORT	
	Dst: S1_ADDR:S1_PORT	
	Uri-Path: /r	
	--------------------->	
	<---------------------	
	Src: S1_ADDR:S1_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Src: D1_ADDR:D1_PORT		
Dst: C_ADDR:C_PORT		

 Figure 6: Workflow example with reverse-proxy standing in for
 both the whole group of servers and each individual server

A.3. Example 3

 The example shown in Figure 7 builds on the example in Appendix A.2.

 However, it considers a reverse-proxy that stands in for only the
 whole group of servers, but not for each individual server Sx.

 The final exchange between C and S1 occurs with CoAP over UDP.

 C P S1 S2
----------------------------->	/* C is not aware	
Src: C_ADDR:C_PORT	that P is in fact	
Dst: group1.com:P_PORT	a reverse-proxy */	
Uri-Path: /r		
<-----------------------------		
Src: group1.com:P_PORT		
Dst: C_ADDR:C_PORT		
4.00 Bad Request		
Multicast-Timeout: (empty)		
Payload: "Please use		
Multicast-Timeout"		

Tiloca & Dijk Expires 3 March 2024 [Page 57]

Internet-Draft Proxy Operations for Group Communication August 2023

----------------------------->		
Src: C_ADDR:C_PORT		
Dst: group1.com:P_PORT		
Multicast-Timeout: 60		
Uri-Path: /r		
	Src: P_ADDR:P_PORT	
	Dst: G_ADDR:G_PORT	
	Uri-Path: /r	
	---------------+----->	
	\	
	+----------------->	
	/* t = 0 : P starts	
	accepting responses	
	for this request */	
	<---------------------	
	Src: S1_ADDR:S1_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Dst: group1.com:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[1, /*CoAP over UDP*/		
#6.260(bstr(S1_ADDR)),		
S1_PORT		
]		
}		
	<-----------------------------------	
	Src: S2_ADDR:S2_PORT	
	Dst: P_ADDR:P_PORT	
<-----------------------------		
Dst: group1.com:P_PORT		
Dst: C_ADDR:C_PORT		
Response-Forwarding {		
[1, /*CoAP over UDP*/		
#6.260(bstr(S2_ADDR)),		
S2_PORT		
]		
}		

Tiloca & Dijk Expires 3 March 2024 [Page 58]

Internet-Draft Proxy Operations for Group Communication August 2023

/* At t = 60, P stops accepting		
responses for this request */		
... ... /* time passes */ 		
-->		
Src: C_ADDR:C_PORT	/* Request intended	
Dst: S1.ADDR:S1_PORT	only to S1 for same	
Uri-Path: /r	resource /r */	
<--		
Src: S1.ADDR:S1_PORT		
Dst: C_ADDR:C_PORT		

 Figure 7: Workflow example with reverse-proxy standing in for
 only the whole group of servers, but not for each individual
 server

Acknowledgments

 The authors sincerely thank Christian Amsuess, Jim Schaad and Goeran
 Selander for their comments and feedback.

 The work on this document has been partly supported by VINNOVA and
 the Celtic-Next project CRITISEC; and by the H2020 project SIFIS-Home
 (Grant agreement 952652).

Authors’ Addresses

 Marco Tiloca
 RISE AB
 Isafjordsgatan 22
 SE-16440 Stockholm Kista
 Sweden
 Email: marco.tiloca@ri.se

 Esko Dijk
 IoTconsultancy.nl
 ________________\
 Utrecht
 Email: esko.dijk@iotconsultancy.nl

Tiloca & Dijk Expires 3 March 2024 [Page 59]

