
CoRE C. Bormann
Internet-Draft Universitaet Bremen TZI
Updates: 8428 (if approved) 4 June 2021
Intended status: Standards Track
Expires: 6 December 2021

 SenML Features and Versions
 draft-ietf-core-senml-versions-05

Abstract

 This short document updates RFC 8428, Sensor Measurement Lists
 (SenML), by specifying the use of independently selectable "SenML
 Features" and mapping them to SenML version numbers.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the CORE Working Group
 mailing list (core@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/core/
 (https://mailarchive.ietf.org/arch/browse/core/).

 Source for this draft and an issue tracker can be found at
 https://github.com/core-wg/senml-versions (https://github.com/core-
 wg/senml-versions).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 6 December 2021.

Bormann Expires 6 December 2021 [Page 1]

Internet-Draft SenML Features and Versions June 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Terminology . 3
 2. Feature Codes and the Version number 3
 2.1. Discussion . 4
 2.2. Updating RFC8428 . 4
 3. Features: Reserved0, Reserved1, Reserved2, Reserved3 5
 4. Feature: Secondary Units 5
 5. Security Considerations 5
 6. IANA Considerations . 6
 7. References . 7
 7.1. Normative References 7
 7.2. Informative References 7
 Acknowledgements . 8
 Author’s Address . 8

1. Introduction

 The Sensor Measurement Lists (SenML) specification [RFC8428] provides
 a version number that is initially set to 10, without further
 specification on the way to make use of different version numbers.

 The traditional idea of using a version number to indicate the
 evolution of an interchange format generally assumes an incremental
 progression of the version number as the format accretes additional
 features over time. However, in the case of SenML, it is expected
 that the likely evolution will be for independently selectable
 capability _features_ to be added to the basic specification that is
 indicated by version number 10. To support this model, this document
 repurposes the single version number accompanying a pack of SenML
 records so that it is interpreted as a bitmap that indicates the set
 of features a recipient would need to have implemented to be able to
 process the pack.

Bormann Expires 6 December 2021 [Page 2]

Internet-Draft SenML Features and Versions June 2021

 This short document specifies the use of SenML Features and maps them
 to SenML version number space, updating [RFC8428].

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Where bit arithmetic is explained, this document uses the notation
 familiar from the programming language C [C], including the "0b"
 prefix for binary numbers defined in Section 5.13.2 of the C++
 language standard [Cplusplus], except that superscript notation
 (example for two to the power of 64: 2^64) denotes exponentiation; in
 the plain text version of this draft, superscript notation is
 rendered in paragraph text by C-incompatible surrogate notation as
 seen in this example, and in display math by a crude plaintext
 representation, as is the sum (Sigma) sign.

2. Feature Codes and the Version number

 The present specification defines "SenML Features", each identified
 by a "feature name" (a text string) and a "feature code" (an unsigned
 integer less than 53).

 The specific version of a SenML pack is composed of a set of
 features. The SenML version number ("bver" field) is then a bitmap
 of these features represented as an unsigned integer, specifically
 the sum of, for each feature present, two taken to the power of the
 feature code of that feature (Figure 1).

 __ 52 fc
 version = \ present(fc) 2
 /__ fc = 0

 Figure 1: Feature bitmap as a sum of feature bits

 where present(fc) is 1 if the feature with the feature code "fc" is
 present, 0 otherwise. (The expression 2^fc can be implemented as "1
 << fc" in C and related languages.)

 RFC editor: Please check that, in the TXT version, no " " crept
 into the above due to xml2rfc bug 641, and remove this paragraph. If
 possible with today’s RFCXML, add the Sigma character as a
 parenthesis after "sum" in the caption.

Bormann Expires 6 December 2021 [Page 3]

Internet-Draft SenML Features and Versions June 2021

2.1. Discussion

 Representing features as a bitmap within a number is quite efficient
 as long as feature codes are sparingly allocated (see also
 Section 6).

 Compatibility with the existing SenML version number, 10 decimal
 (0b1010), requires reserving four of the least significant bit
 positions for the base version as described in Section 3. There is
 an upper limit to the range of the integer numbers that can be
 represented in all SenML representations: practical JSON limits this
 to 2^53-1 [RFC7493]. This means the feature codes 4 to 52 are
 available, one of which is taken by the feature defined in Section 4,
 leaving 48 for allocation. (The current version 10 (with all other
 feature codes unset) can be visualized as
 "0b0001010".) For a
 lifetime of this scheme of several decades, approximately two feature
 codes per year or fewer should be allocated. Note that less
 generally applicable features can always be communicated via fields
 labeled with names that end with the "_" character ("must-understand
 fields"), see Section 4.4 of [RFC8428].)

 Most representations visible to engineers working with SenML will use
 decimal numbers, e.g., 26 (0b11010, 0x1a) for a version that adds the
 "Secondary Units" feature (Section 4). This is slightly unwieldy,
 but will be quickly memorized in practice.

 As a general observation, ending up over time with dozens of
 individually selectable optional extensions may lead to too many
 variants of what is supported by different implementations, reducing
 interoperability. So, in practice, it is still desirable to batch up
 extensions that are expected to be supported together into a single
 feature bit, leading to a sort of hybrid between completely
 independent extensions and a linear version scheme. This is also
 another reason why a space of 48 remaining feature codes should
 suffice for a while.

2.2. Updating Section 4.4 of [RFC8428]

 The last paragraph of Section 4.4 of [RFC8428] may be read to give
 the impression that SenML version numbers are totally ordered, i.e.,
 that an implementation that understands version n also always
 understands all versions k < n. If this ever was true for SenML
 versions before 10, it certainly is no longer true with this
 specification.

Bormann Expires 6 December 2021 [Page 4]

Internet-Draft SenML Features and Versions June 2021

 Any SenML pack that sets feature bits beyond the first four will lead
 to a version number that actually is greater than 10, so the
 requirement in Section 4.4 of [RFC8428] will prevent false
 interoperability with version 10 implementations.

 Implementations that do implement feature bits beyond the first four,
 i.e., versions greater than 10, will instead need to perform a
 bitwise comparison of the feature bitmap as described in this
 specification and ensure that all features indicated are understood
 before using the pack. E.g., an implementation that implements basic
 SenML (version number 10) plus only a future feature code 5, will
 accept version number 42, but would not be able to work with a pack
 indicating version number 26 (base specification plus feature code
 4). (If the implementation _requires_ feature code 5 without being
 backwards compatible, it will accept 42, but not 10.)

3. Features: Reserved0, Reserved1, Reserved2, Reserved3

 For SenML Version 10 as described in [RFC8428], the feature codes 0
 to 3 are already in use. Reserved1 (1) and Reserved3 (3) are always
 present and the features Reserved0 (0) and Reserved2 (2) are always
 absent, i.e., the four least significant bits set to 0b1010 indicate
 a version number of 10 if no other feature is in use. These four
 reserved feature codes are not to be used with any more specific
 semantics except in a specification that updates the present
 specification. (Note that Reserved0 and Reserved2 could be used in
 such a specification in a similar way to the way the feature codes 4
 to 52 are in the present specification.)

4. Feature: Secondary Units

 The feature "Secondary Units" (code number 4) indicates that
 secondary unit names [RFC8798] MAY be used in the "u" field of SenML
 Records, in addition to the primary unit names already allowed by
 [RFC8428].

 Note that the most basic use of this feature simply sets the SenML
 version number to 26 (10 + 2^4).

5. Security Considerations

 The security considerations of [RFC8428] apply. This specification
 provides structure to the interpretation of the SenML version number,
 which poses no additional security considerations except for some
 potential for surprise that version numbers do not simply increase
 linearly.

Bormann Expires 6 December 2021 [Page 5]

Internet-Draft SenML Features and Versions June 2021

6. IANA Considerations

 IANA is requested to create a new subregistry "SenML features" within
 the SenML registry [IANA.senml], with the registration policy
 "specification required" [RFC8126] and the columns:

 * Feature code (an unsigned integer less than 53)

 * Feature name (text)

 * Specification

 To facilitate the use of feature names in programs, the designated
 expert is requested to ensure that feature names are usable as
 identifiers in most programming languages, after lower-casing the
 feature name in the registry entry and replacing whitespace with
 underscores or hyphens, and that they also are distinct in this form.

 The initial content of this registry is as follows:

 +==============+=================+====================+
 | Feature code | Feature name | Specification |
 +==============+=================+====================+
 | 0 | Reserved0 | RFCthis |
 +--------------+-----------------+--------------------+
 | 1 | Reserved1 | RFCthis |
 +--------------+-----------------+--------------------+
 | 2 | Reserved2 | RFCthis |
 +--------------+-----------------+--------------------+
 | 3 | Reserved3 | RFCthis |
 +--------------+-----------------+--------------------+
 | 4 | Secondary Units | RFCthis, [RFC8798] |
 +--------------+-----------------+--------------------+

 Table 1: Features defined for SenML at the time of
 writing

 As the number of features that can be registered has a hard limit (48
 codes left at the time of writing), the designated expert is
 specifically instructed to maintain a frugal regime of code point
 allocation, keeping code points available for SenML Features that are
 likely to be useful for non-trivial subsets of the SenML ecosystem.
 Quantitatively, the expert could for instance steer the allocation to
 a target of not allocating more than 10 % of the remaining set per
 year.

Bormann Expires 6 December 2021 [Page 6]

Internet-Draft SenML Features and Versions June 2021

 Where the specification of the feature code is provided in a document
 that is separate from the specification of the feature itself (as
 with feature code 4 above), both specifications should be listed.

7. References

7.1. Normative References

 [C] International Organization for Standardization,
 "Information technology Programming languages C", ISO/
 IEC 9899:2018, Fourth Edition, June 2018,
 <https://www.iso.org/standard/74528.html>.

 [Cplusplus]
 International Organization for Standardization,
 "Programming languages C++", ISO/IEC 14882:2020, Sixth
 Edition, December 2020,
 <https://www.iso.org/standard/79358.html>.

 [IANA.senml]
 IANA, "Sensor Measurement Lists (SenML)",
 <http://www.iana.org/assignments/senml>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8428] Jennings, C., Shelby, Z., Arkko, J., Keranen, A., and C.
 Bormann, "Sensor Measurement Lists (SenML)", RFC 8428,
 DOI 10.17487/RFC8428, August 2018,
 <https://www.rfc-editor.org/info/rfc8428>.

 [RFC8798] Bormann, C., "Additional Units for Sensor Measurement
 Lists (SenML)", RFC 8798, DOI 10.17487/RFC8798, June 2020,
 <https://www.rfc-editor.org/info/rfc8798>.

7.2. Informative References

Bormann Expires 6 December 2021 [Page 7]

Internet-Draft SenML Features and Versions June 2021

 [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493,
 DOI 10.17487/RFC7493, March 2015,
 <https://www.rfc-editor.org/info/rfc7493>.

Acknowledgements

 Ari Keränen proposed to use the version number as a bitmap and
 provided further input on this specification. Jaime Jiménez helped
 clarify the document by providing a review. Elwyn Davies provided a
 detailed GENART review, with directly implementable text suggestions
 that now form part of this specification. Rob Wilton supplied
 comments one of which became the last paragraph of Section 2.1; Éric
 Vyncke helped with Section 2. Additional thanks go to the other IESG
 reviewers.

Author’s Address

 Carsten Bormann
 Universitaet Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Bormann Expires 6 December 2021 [Page 8]

