
CoRE C. Amsüss

Internet-Draft

Intended status: Experimental M. Tiloca

Expires: 14 January 2021 RISE AB

 13 July 2020

 Cachable OSCORE

 draft-amsuess-core-cachable-oscore-00

Abstract

 OSCORE group communication can secure CoAP group communication across

 untrusted proxies, but in doing so sidesteps the proxies’ caching

 abilities. This restores cachability of requests by introducing

 consensus requests which any client in a group can send.

Note to Readers

 Discussion of this document takes place on the CORE Working Group

 mailing list (core@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/core/

 (https://mailarchive.ietf.org/arch/browse/core/).

 Source for this draft and an issue tracker can be found at

 https://gitlab.com/chrysn/core-cachable-oscore/

 (https://gitlab.com/chrysn/core-cachable-oscore/-/tree/master).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 January 2021.

Amsüss & Tiloca Expires 14 January 2021 [Page 1]

Internet-Draft Cachable OSCORE July 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Procedural Status . 3

 2. Terminology . 3

 3. Simple Cachability using Ticket Requests 4

 3.1. Usefullness . 5

 4. Deterministic Requests 5

 4.1. ID-Detail . 6

 4.2. Use of Deterministic Requests 6

 5. Open questions . 7

 6. Unsorted further ideas 7

 7. References . 7

 7.1. Normative References 7

 7.2. Informative References 8

 Authors’ Addresses . 8

1. Introduction

 With OSCORE group communication, requests and responses can be read

 by other group members can be read by any group member as long as

 pairwise mode is not used. While this can populate a proxy’s cache

 if the proxy is a member of the group, and the proxy can use the

 cache to respond if is recognized by the client as an eligible

 server, untrusted proxies only see opaque uncachable ciphertext.

Amsüss & Tiloca Expires 14 January 2021 [Page 2]

Internet-Draft Cachable OSCORE July 2020

 This document introduces cachability in responses in two stages,

 initially building on concepts developed in

 [I-D.tiloca-core-observe-multicast-notifications]. Caching is thus

 enabled for proxies that are not members of the OSCORE group, and are

 unaware of OSCORE in general. Allowing them to cache requests is

 traded against some request privacy: For clients that participate in

 this scheme, the proxy (and any other party that can read the network

 traffic) can see which clients request the same resource, and how the

 resource’s representation changes in size over time.

 As in [I-D.tiloca-core-observe-multicast-notifications], clients and

 servers are assumed to already be members of a suitable OSCORE group.

1.1. Procedural Status

 [

 This is an early idea that would bring back some concepts to OSCORE

 that were present as OSCON in its early drafts.

 The main purpose of publishing the draft at this stage is to fathom

 whether the concept of a deterministic client has a chance of living

 up the standards of the IETF community (no pun intended).

]

2. Terminology

 The reader is expected to be familiar with the terms of

 [I-D.ietf-core-oscore-groupcomm].

 This document introduces the following new terms:

 Consensus Request A Group OSCORE request that can be used repeatedly

 to access a particular resource.

 It has all the properties relevant to caching, but its transport

 dependent properties (e.g. Token or Message ID) are not defined.

 Thus, different requests on the wire can both be said to "be the

 Consensus Request" even if they have different tokens or client

 addresses.

 Ticket Request A Consensus Request generated by the server itself.

 The Phantom Request of

 [I-D.tiloca-core-observe-multicast-notifications] is the

 prototypical Ticket Request.

Amsüss & Tiloca Expires 14 January 2021 [Page 3]

Internet-Draft Cachable OSCORE July 2020

 Deterministic Client A fictious member of an OSCORE group with no

 Sender Sequence Number and no Recipient Context.

 The Deterministic Client is set up in the group manager,

 has only the minimum common set of privileges shared by all group

 members.

 Deterministic Request A Consensus Request generated by the

 Deterministic Client.

3. Simple Cachability using Ticket Requests

 Building on phantom requests and informative responses of

 [I-D.tiloca-core-observe-multicast-notifications], basic proxying

 operation is already possible with the mechanisms described there:

 A server can, instead of sending a regular response, send an

 informative response, which is a protected 5.03 error message whose

 payload contains the phantom request (which is a Ticket Request in

 this document’s broader terminology).

 Even though the request is not necessarily an observe request, the

 server picks FETCH as the outer code of the request in order to make

 the request cachable.

 The client verifies that the ticket request is indeed equivalent to

 its original request, and - and this is where the process starts to

 deviate from multicast notifications - sends the ticket request to

 the server through the proxy.

 As with multicast notifications, this check especially verifies that

 the request URI, including protocol and host name, is identical

 between the original and the Ticket Request. Any difference there

 would indicate URI aliasing, which is not allowed initially.

 When the server receives the ticket request, it produces a regular

 response, but puts a non-zero Max-Age option as an outer option.

 (There is no point in putting in an inner Max-Age option, as the

 client could not pin it in time).

 When another client later asks for the same resource, its new request

 produces a cache miss at the proxy (as it uses a different KID and

 Partial IV), but the server responds with the same Ticket Request.

 The Ticket Request can then be served from the proxy’s cache.

Amsüss & Tiloca Expires 14 January 2021 [Page 4]

Internet-Draft Cachable OSCORE July 2020

 When multiple proxies are in use, or the response was expires from

 the proxy’s cache, the server will receive the Ticket Request

 multiple times. It is a matter of perspective whether it treats that

 as an acceptable replay (given that this whole mechansim only makes

 sense on side effect free requests), or whether it is conceptualized

 as having an internal proxy where the request produces a cache hit.

3.1. Usefullness

 As all clients’ requests produce an initial cache miss and thus hit

 the origin server, the caching benefits of such an approach are

 limited to two cases:

 * observations (where this can be used to set up multicast

 notifications through proxies), and

 * large representations that are use outer block-wise mode (which

 are probably rare compared to inner block-wise mode).

 For any other case, the benefit of caching a single response of only

 up to 1kB in size is probably outweighed by the necessity to have an

 additional round trip, or at least drastically reduces the gains.

 The mechanism could probably be extended to work for inner block-wise

 as well (by introducing an option by which the server sends the next-

 block Ticket Request along with the response). However, there has to

 be a better way...

4. Deterministic Requests

 This section introduces a method of arriving at a Consensus Request

 inside the client: Rather than relying on the server to decree a

 Token Request, clients build their request in as reproducible a

 fashion as possible (where some disagreement might be eventually

 unavoidable, but won’t have more severe a consequence than two

 requests for the same resource occupying space in the caches).

 The hard part is arriving at a consensus nonce, while avoiding nonce

 reuse.

 A suitable nonce can be produced by applying a cryptographic hash

 function to the complete input of the encryption operation, which is

 the plaintrext of the COSE object and the AAD (with the partial IV

 set to 0).

Amsüss & Tiloca Expires 14 January 2021 [Page 5]

Internet-Draft Cachable OSCORE July 2020

 (The precise hashing mechanism is yet to be defined, but any non-

 malleable cryptographically secure hash should do, and malleable

 hashes can be permitted if the input material is adaequately

 encapsulated before hashing).

 As the 40 bit available in the nonce are by far insufficient to

 ensure that the deterministic client’s nonce is not reused, (and even

 with some trickery based on the deterministic client never responding

 to other members’ requests with their nonces, the common algorithms’

 nonces would still be too short), the hash has to be fed into the key

 generation rather than the encyption’s nonce in a new mechanism.

4.1. ID-Detail

 A new field in the OSCORE object is defined, named ID-Detail.

 It is in every way analogous to ID-Context, is concatenated onto ID-

 Context when deriving keys in the info input to the KDF, and is only

 distinct from ID-Context to allow using both ID-Context and ID-Detail

 at the same time.

 It goes into the "unprotected" bucket, and is serialized in the

 compressed OSCORE option using an indicator flag in the 8-63 range.

 [Once that is specified, it would be much easier to execute OSCORE

 B.2 mode on that field rather than on the ID-Context - the effect is

 the same, but it does not collide with namespacing of ID-Context any

 more.]

4.2. Use of Deterministic Requests

 A client that sends a request for which it hopes to get a cached

 response can ask the group manager for the key details of the

 Deterministic Client.

 In addition to the public key data, it also receives the private key

 generated by the group manager.

 It builds the request, hashes it, places the hash (or some truncation

 thereof) in the ID-Detail field, and finishes derivation of its

 security context for this request. It uses 0 as the Partial IV, and

 encrypts the message. It uses FETCH as the outer code to make it

 cachable, even if no observation is requested. As the key is derived

 using material from the whole request, this key/nonce pair is only

 used for this very message and deterministically encrypted unless

 there is a hash collision between two deterministic requests.

 It then sends the request through the proxy to the server.

Amsüss & Tiloca Expires 14 January 2021 [Page 6]

Internet-Draft Cachable OSCORE July 2020

 The server applies the regular processing to it, deriving the

 security context based on the ID-Detail.

 As the recipient context for a deterministic client does not have a

 sequence number to strike out of the replay window, the server needs

 to apply the reasoning of [I-D.amsuess-lwig-oscore] to treat the

 potential replay as answerable if the request is side effect free.

 By setting a non-zero Max-Age option, the server makes the request

 usable for the proxy cache.

5. Open questions

 * Can the informative response be unprotected?

 Otherwise, how would a proxy forwarding the Ticket Request to a

 multicast-notification network learn the relevant token?

 (The client shouldn’t really trust the server’s statement about

 the requests’ equivalence anyway).

 * What can go wrong if we use a shared private key?

6. Unsorted further ideas

 * All or none of the deterministic requests should have an inner

 observe option. Preferably none - that makes messages shorter,

 and clients need to ignore that option either way when checking

 whether a Consensus Request matches their intended request.

 * An outer ETag does make sense here; an easy value for the server

 is the response Partial IV.

7. References

7.1. Normative References

 [I-D.tiloca-core-observe-multicast-notifications]

 Tiloca, M., Hoeglund, R., Amsuess, C., and F. Palombini,

 "Observe Notifications as CoAP Multicast Responses", Work

 in Progress, Internet-Draft, draft-tiloca-core-observe-

 multicast-notifications-03, 13 July 2020,

 <http://www.ietf.org/internet-drafts/draft-tiloca-core-

 observe-multicast-notifications-03.txt>.

 [I-D.ietf-core-oscore-groupcomm]

 Tiloca, M., Selander, G., Palombini, F., and J. Park,

 "Group OSCORE - Secure Group Communication for CoAP", Work

Amsüss & Tiloca Expires 14 January 2021 [Page 7]

Internet-Draft Cachable OSCORE July 2020

 in Progress, Internet-Draft, draft-ietf-core-oscore-

 groupcomm-09, 23 June 2020, <http://www.ietf.org/internet-

 drafts/draft-ietf-core-oscore-groupcomm-09.txt>.

7.2. Informative References

 [I-D.amsuess-lwig-oscore]

 Amsuess, C., "OSCORE Implementation Guidance", Work in

 Progress, Internet-Draft, draft-amsuess-lwig-oscore-00, 29

 April 2020, <http://www.ietf.org/internet-drafts/draft-

 amsuess-lwig-oscore-00.txt>.

Authors’ Addresses

 Christian Amsüss

 Austria

 Email: christian@amsuess.com

 Marco Tiloca

 RISE AB

 Isafjordsgatan 22

 SE-16440 Stockholm Kista

 Sweden

 Email: marco.tiloca@ri.se

Amsüss & Tiloca Expires 14 January 2021 [Page 8]

