
CoRE Working Group C. Amsüss
Internet-Draft
Intended status: Standards Track T. Fossati
Expires: 5 September 2024 ARM
 4 March 2024

 The Constrained RESTful Application Language (CoRAL)
 draft-ietf-core-coral-06

Abstract

 The Constrained RESTful Application Language (CoRAL) defines a data
 model and interaction model as well as a compact serialization
 formats for the description of typed connections between resources on
 the Web ("links"), possible operations on such resources ("forms"),
 and simple resource metadata.

Note to Readers

 This note is to be removed before publishing as an RFC.

 The issues list for this Internet-Draft can be found at
 <https://github.com/core-wg/coral/labels/coral>. Companion material
 for this Internet-Draft can be found at <https://github.com/core-wg/
 coral>.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 5 September 2024.

Copyright Notice

 Copyright (c) 2024 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Amsüss & Fossati Expires 5 September 2024 [Page 1]

Internet-Draft Constrained RESTful Application Language March 2024

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Revised BSD License text as
 described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Data and Interaction Model 4
 1.2. Notational Conventions 4
 2. Data and Interaction Model 4
 2.1. Browsing Context . 4
 2.2. Documents . 5
 2.3. Data model . 5
 2.3.1. Observations . 6
 2.3.2. Possible variations 7
 2.3.3. Examples . 7
 2.4. Serialization Format 10
 2.5. Links . 11
 2.6. Forms . 12
 2.7. Form Fields . 13
 2.8. Navigation . 13
 2.9. History Traversal . 15
 2.10. Designing interactions in an Open World 15
 3. Binary Format . 16
 3.1. Data Structure . 16
 3.1.1. Documents . 16
 3.1.2. Directives . 17
 3.1.3. URIs . 17
 3.1.4. Links . 18
 3.1.5. Forms . 18
 3.1.6. Form Fields . 19
 3.2. Dictionary Compression 19
 3.2.1. Media Type Parameter 20
 3.3. Export Interface . 20
 4. Document Semantics . 21
 4.1. Submitting Documents 21
 4.1.1. PUT Requests . 21
 4.1.2. POST Requests . 21
 4.2. Returning Documents 22
 4.2.1. Success Responses 22
 4.2.2. Redirection Responses 22
 4.2.3. Error Responses 23
 5. Usage Considerations . 23

Amsüss & Fossati Expires 5 September 2024 [Page 2]

Internet-Draft Constrained RESTful Application Language March 2024

 5.1. Specifying CoRAL-based Applications 23
 5.1.1. Application Interfaces 23
 5.1.2. Resource Identifiers 24
 5.1.3. Implementation Limits 24
 5.2. Minting Vocabulary 25
 5.3. Expressing Registered Link Relation Types 25
 5.4. Expressing Simple RDF Statements 26
 5.5. Expressing Natural Language Texts 26
 5.6. Embedding Representations in CoRAL 27
 6. Security Considerations 27
 7. IANA Considerations . 29
 7.1. Media Type "application/coral+cbor" 29
 7.2. CoAP Content Formats 30
 8. References . 30
 8.1. Normative References 30
 8.2. Informative References 32
 Appendix A. Core Vocabulary 35
 A.1. Base . 36
 A.2. Collections . 37
 A.3. HTTP . 37
 A.4. CoAP . 38
 Appendix B. Default Dictionary 39
 Appendix C. Mappings to other formats 40
 C.1. RDF . 40
 C.1.1. Example . 42
 C.2. CoRE Link Format . 43
 Appendix D. Change Log . 45
 Acknowledgements . 47
 Authors’ Addresses . 47

1. Introduction

 The Constrained RESTful Application Language (CoRAL) is a language
 for the description of typed connections between resources on the Web
 ("links"), possible operations on such resources ("forms"), and
 simple resource metadata.

 CoRAL is intended for driving automated software agents that navigate
 a Web application based on a standardized vocabulary of link relation
 types and operation types. It is designed to be used in conjunction
 with a Web transfer protocol, such as the Hypertext Transfer Protocol
 (HTTP) [RFC7230] or the Constrained Application Protocol (CoAP)
 [RFC7252].

 This document defines the CoRAL data model and interaction model as
 well as a compact serialization format.

Amsüss & Fossati Expires 5 September 2024 [Page 3]

Internet-Draft Constrained RESTful Application Language March 2024

1.1. Data and Interaction Model

 The data model is similar to the Resource Description Framework (RDF)
 [W3C.REC-rdf11-concepts-20140225] model, with provisions to enable
 form based interaction and to express data from Web Linking
 ([RFC8288]) based models such as [RFC6690]’s Link Format.

 The interaction model derives from the processing model of HTML
 [W3C.REC-html52-20171214] and specifies how an automated software
 agent can change the application state by navigating between
 resources following links and performing operations on resources
 submitting forms.

1.2. Notational Conventions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 Terms defined in this document appear in _cursive_ where they are
 introduced (rendered in plain text as the new term surrounded by
 underscores).

2. Data and Interaction Model

 The Constrained RESTful Application Language (CoRAL) is designed for
 building Web-based applications [W3C.REC-webarch-20041215] in which
 automated software agents navigate between resources by following
 links and perform operations on resources by submitting forms.

2.1. Browsing Context

 Borrowing from HTML 5 [W3C.REC-html52-20171214], each such agent
 maintains a _browsing context_ in which the representations of Web
 resources are processed. (In HTML, the browsing context typically
 corresponds to a tab or window in a Web browser.)

 At any time, one representation in a browsing context is designated
 the _active_ representation.

Amsüss & Fossati Expires 5 September 2024 [Page 4]

Internet-Draft Constrained RESTful Application Language March 2024

2.2. Documents

 A resource representation in one of the CoRAL serialization formats
 is called a CoRAL _document_. The URI that was used to retrieve such
 a document is called the document’s _retrieval context_. This URI is
 also considered the base URI for relative URI references in the
 document.

 A CoRAL document consists of a list of zero or more statements that
 can express links or (in a composition of statements) forms. CoRAL
 serialization formats may contain additional elements for efficiency
 or convenience, such as an embedded base URI that takes precedence
 over the document’s base URI, or to concisely represent compound
 statements (e.g., to express forms).

2.3. Data model

 The _basic CoRAL information model_ is similar to the Resource
 Description Framework (RDF) [W3C.REC-rdf11-concepts-20140225]
 information model: Data is expressed as an (unordered) set of triples
 (also called statements), consisting of a subject, a predicate and an
 object. The predicate is always a URI, the subject is a URI or a
 blank node, and the object is either a URI, a blank node or a
 litreal. All URIs here are limited to the syntax-based normalized
 form of [RFC3986] Section 6.2.2.

 Blank nodes are unnamed entities. Literals are CBOR objects.

 These triples form a directed multigraph with the subject and object
 being source and destination, and the predicate a description on the
 edge. That graph is equivalent to the data.

 To form a set and a graph, we define an equivalence relation: URIs
 are only equal to URIs and if they are identical byte-wise. A blank
 node is only equal to itself. A literal is equal to a different
 literal if its value is equal to the other literal’s value in the
 CBOR generic data model.

 Triples are equivalent to each other if their subject, predicate and
 object are pair-wise equivalent.

 The _CoRAL structured information model_ is a sequence of "passings"
 of the basic model’s edges, starting at a node identifying the
 document (its retrieval context, typically URI from which it was
 obtained) where

 * each edge is passed at least one time in total,

Amsüss & Fossati Expires 5 September 2024 [Page 5]

Internet-Draft Constrained RESTful Application Language March 2024

 * each edge is passed at most one time after each passing that ends
 in its start point (with the obvious exception that edges from the
 retrieval context can be passed once from the start), and

 * between a passing of an edge from A to B and a later passing from
 B to C, passings can only be along edges that can be reached from
 B along the graph, until B is the end of a different passing.

 For better understanding, think of the structured information model
 as a sort of tree spanning from the retrieval context, with the
 oddity that when a node is reached along two different edges (which a
 normal tree doesn’t do), it is up to the builder of the tree whether
 to describe anything children of the entered node on one parent or on
 the other parent, on both, or to describe some children at the first
 and others at a later occasion.

 Exceeding the RDF-like model, this represents CoRAL’s focus on the
 discovery of possivble future application states over the description
 of a graph of resources.

2.3.1. Observations

 The structured form of a data set is in general not unique: If a node
 has more than one child, their sequence can be varied. If a node has
 more than one parent, its children may be expressed on any non-empty
 set of its parents to obtain a structured data set that expresses the
 same data set.

 In general, arbitrary basic data can not be expressed in a structured
 data set, because

 * There may not be a tree that covers the directed graph, or the
 tree’s root may not be the retrieval context.

 * There may be multiple edges into a blank node.

 In particular, the precise data from one structured information
 document can only be expressed with the same retrieval context.
 However, statements can be added to make a data set that is
 expressible elsewhere (this document defines the carries-information-
 about relation type leading to the
 http://www.iana.org/assignments/relation/carries-information-about
 predicate being usable here), and subsets of the data can be taken
 and expressed.

Amsüss & Fossati Expires 5 September 2024 [Page 6]

Internet-Draft Constrained RESTful Application Language March 2024

 Forms are not special in the information model, but are merely
 statements around a blank node. They can be special in serialization
 formats (which have more efficient notations for them), and are used
 by the interaction model for special operations.

 The structured information model contains more information than the
 basic information model. [TBD put this into a different context
 because it’s not an observation any more:] Which precise structure
 is picked is to suit the processing application, typically by
 profiling the information and its serialization. It is recommended
 that the information encoded in the structure (including the order)
 be derived from data available in the general data set, even though
 the statements that guide the structure are not necessarily encoded
 in the subset of data that is being structured.

 Serializations like the one in Section 3 have even more choices than
 the structured information model: They can choose to use or not use
 packed CBOR to compress parts, can spell out URIs in full or use
 relative references, or can exercise freedoms of the CBOR encoding.
 Variation there is not to have an influence on the interpretation of
 a CoRAL document.

2.3.2. Possible variations

 * Each URI is tagged with whether it is intended to be dereferenced
 or used as an identifier.

2.3.3. Examples

 This subsection illustrates the information model and serialization
 based on an example from [RFC6690]:

</sensors>;ct=40;title="Sensor Index",
</sensors/temp>;rt="temperature-c";if="sensor",
</sensors/light>;rt="light-lux";if="sensor",
<http://www.example.com/sensors/t123>;anchor="/sensors/temp";rel="describedby",
</t>;anchor="/sensors/temp";rel="alternate"

 Figure 1: Original example at coap://.../.well-known/core

 After an extraction described in Appendix C.2, this list represents
 the content of the basic information model representing the above.
 For the basic model, the table is to be considered unsorted in the
 first step.

Amsüss & Fossati Expires 5 September 2024 [Page 7]

Internet-Draft Constrained RESTful Application Language March 2024

 +===================+===+===============
================+
 |Subject |Predicate |Object
 |
 +===================+===+===============
================+
 |coap://.../ |rel:hosts |coap://.../sens
ors |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors |linkformat:ct |40
 |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors |linkformat:title |"Sensor Index"
 |
 +-------------------+---+---------------
----------------+
 |coap://.../ |http://www.iana.org/assignments/relation/|coap://.../sens
ors/temp |
 | |hosts |
 |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors/|linkformat:rt |rt:temperature-
c |
 |temp | |
 |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors/|linkformat:if |if:sensor
 |
 |temp | |
 |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors/|rel:describedby |http://www.exam
ple.com/sensors/|
 |temp | |t123
 |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors/|rel:alternate |coap://.../t
 |
 |temp | |
 |
 +-------------------+---+---------------
----------------+
 |coap://.../ |http://www.iana.org/assignments/relation/|coap://.../sens
ors/light |
 | |hosts |
 |
 +-------------------+---+---------------
----------------+
 |coap://.../sensors/|linkformat:rt |rt:light-lux
 |
 |light | |
 |

 +-------------------+---+---------------
----------------+
 |coap://.../sensors/|linkformat:if |if:sensor
 |
 |light | |
 |
 +-------------------+---+---------------
----------------+

 Table 1: Basic (and, through the sequence, Strucutred)
 Information Model extracted from there (using CURIEs: rel =
 http://www.iana.org/assignments/relation/, linkformat is TBD in
 the conversion, if, rt is TBD with IANA).

 During extraction, some information on item ordering was preserved
 into the structured data. Note that while the CoRAL structured data
 preserves some sequence aspects of the Link-Format file (like the
 order of attributes), others (like the relative order of links from
 different contexts) are deemed irrelevant and not preserved.

 For serialization, the use of the packing described with the
 conversion results in a binary CBOR file with this CBOR diagnostic
 notation:

Amsüss & Fossati Expires 5 September 2024 [Page 8]

Internet-Draft Constrained RESTful Application Language March 2024

[
 [2, simple(10) / item 10 for rel:hosts /, cri"/sensors", [
 [2, 6(2) / item 20 for linkformat:ct /, 40],
 [2, simple(15) / item 15 for linkformat:title /, "Sensor Index"]
]],
 [2, simple(10) / item 10 for rel:hosts /, cri"/sensors/temp", [
 [2, 6(1) / item 18 for linkformat:if /, 6(200) / cri"http:TBD...temperature-c
" /],
 [2, 6(-2) / item 19 for linkformat:rt /, 6(250) / cri"http:TBD...sensor" /],
 [2, simple(12) / item 12 for rel:describedby /, cri"http://www.example.com/se
nsors/t123"],
 [2, simple(11) / item 11 for rel:alternate /, cri"/t"]
]],
 [2, 10 / item10 for rel:hosts /, cri"/sensors/light", [
 [2, 6(1) / item 18 for linkformat:if /, 6(-201)],
 [2, 6(-2) / item 19 for linkformat:rt /, 6(250)]
]]
]

 Figure 2: Serialized CoRAL file in diagnostic notation.

 [TBD: Numbers are made up]

 Note that the "temperature-c" interface and "sensor" resource type
 get code points in the link-format dictionary because they are of
 reg-name style and thus would be registered as CoRE Parameters, and
 be included in the packing as well.

2.3.3.1. Literal example

 To illustrate non-trivial literals, a link example of [RFC8288] is
 converted.

 (Note that even the conversion scheme hinted at above for [RFC6690]
 link format makes no claims at being applicable to general purpose
 web links like the below; this is merely done to demonstrate how
 literals can be handled. The example even so happens well illustrate
 that point: General link attributes may only be valid on the target
 when the link is followed in that direction ("letztes Kapitel" means
 last chapter), whereas convertible link-format documents use titles
 that apply to the described resource independent of which link is
 currently being followed.)

 Link: </TheBook/chapter2>;
 rel="previous"; title*=UTF-8’de’letztes%20Kapitel,

 Figure 3: Original link about a book chapter from RFC8288

 The model this would be converted to is:

Amsüss & Fossati Expires 5 September 2024 [Page 9]

Internet-Draft Constrained RESTful Application Language March 2024

 +=====================+==================+========================+
 | Subject | Predicate | Object |
 +=====================+==================+========================+
 | http://.../ | rel:previous | http://.../TheBook/ |
 | | | chapter2 |
 +---------------------+------------------+------------------------+
 | http://.../TheBook/ | linkformat:title | "letztes Kapitel" with |
 | chapter2 | | language tag "de" |
 +---------------------+------------------+------------------------+

 Table 2: Information model extracted from above

 In CBOR serialization, this produces:

[
 [2, 6(...) / rel:previous /, cri"/TheBook/chapter2", [
 [2, simple(15) / item 15 for linkformat:title /, 38(["de", "letztes Kapitel"]
)]
]]
]

 Figure 4: Serialization of the RFC8288-based example

2.4. Serialization Format

 The primary serialization format is a compact, binary encoding of
 links and forms in Concise Binary Object Representation (CBOR)
 [RFC8949]. This format is intended for environments with constraints
 on power, memory, and processing resources [RFC7228] and shares many
 similarities with the message format of CoAP: In place of verbose
 strings, small numeric identifiers are used to encode link relation
 types and operation types. Uniform Resource Identifiers (URIs)
 [RFC3986] are expressed as Constrained Resource Identifier (CRI)
 references [I-D.ietf-core-href] and thus pre-parsed for easy use with
 CoAP. As a result, link serializations in CoRAL are often much more
 compact and easier to process than equivalent serializations in CoRE
 Link Format [RFC6690].

 For easy representation of CoRAL documents in text, CBOR diagnostic
 notation is used. Along with indentation and comments, the notation
 introduced in [I-D.bormann-cbor-edn-literals] is used to represent
 CRIs. This format is not expected to be sent over the network.

 [To be discussed: For even better readability, the RDF Turtle
 [W3C.REC-turtle-20140225] format can be used when only the basic
 information model content is to be conveyed. When used like this,
 the conversion according to the RDF appendix is implied.]

Amsüss & Fossati Expires 5 September 2024 [Page 10]

Internet-Draft Constrained RESTful Application Language March 2024

2.5. Links

 Any statement "links" a resource with a second resource or literal,
 and is thus also referred to as a link.

 In [RFC8288] terminology, a CoRAL link’s subject is the _link
 context_, the predicate is the _link relation type_, and the object
 is the _link target_.

 However, a link in CoRAL does not have target attributes. Instead, a
 link may have a list of zero or more nested elements. These enable
 both the description of resource metadata and the chaining of links,
 which is done in [RFC8288] by setting the anchor of one link to the
 target of another.

 A link can be viewed as a statement of the form "{link context}
 has a {link relation type} resource at {link target}" where the
 link target may be further described by nested elements.

 A link relation type identifies the semantics of a link. In HTML and
 in [RFC8288], link relation types are typically denoted by an IANA-
 registered name, such as stylesheet or type. In CoRAL, all link
 relation types are, in contrast, denoted by a Universal Resource
 Identifier (URI) [RFC3986], such as
 <http://www.iana.org/assignments/relation/stylesheet> or
 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>. This allows for
 the decentralized creation of new link relation types without the
 risk of collisions when they come from different organizations or
 domains of knowledge. URIs can also lead to documentation, schema,
 and other information about a link relation type. In CoRAL
 documents, these URIs are only used as identity tokens, though, and
 are compared with Simple String Comparison as specified in
 Section 6.2.1 of [RFC3986].

 If the link target is a URI and the URI scheme indicates a Web
 transfer protocol like HTTP or CoAP, an agent can dereference the URI
 and navigate the browsing context to its target resource; this is
 called _following the link_. An anonymous resource is a resource that
 is identified by neither a URI nor a literal representation. The
 agent can still follow the link, but can not dereference it and is
 limited in its next steps by the outgoing links that are expressed in
 the current document.

 A link can occur as a top-level element in a document or as a nested
 element within a link. When a link occurs as a top-level element,
 the link context implicitly is the document’s retrieval context.
 When a link occurs nested within a link, the link context of the
 nested link is the link target of the enclosing link.

Amsüss & Fossati Expires 5 September 2024 [Page 11]

Internet-Draft Constrained RESTful Application Language March 2024

 There are no restrictions on the cardinality of links; there can be
 multiple links to and from a particular target, and multiple links of
 the same or different types between a given link context and target.
 However, the nesting nature of the data model constrains the
 description of resource relations to a tree: Relations between linked
 resources can only be described by further nesting links.

2.6. Forms

 A _form_ provides instructions to an agent for performing an
 operation on a resource on the Web. A form has a _form context_, an
 operation type, a _request method_, and a _submission target_.
 Additionally, a form may be accompanied by a list of zero or more
 form fields.

 In the basic information model, the form is identified with an
 anonymous node. The form context and operation type are the subject
 and predicate of an incoming link, respectively; request method and
 submission target of an outgoing link. Form fields are additional
 links from that form.

 A form can be viewed as an instruction of the form "To perform an
 {operation type} operation on {form context}, make a {request
 method} request to {submission target}" where the request may be
 further described by form fields.

 An operation type identifies the semantics of the operation.
 Operation types are denoted (like link relation types) by a URI.

 Form contexts and submission targets are both denoted by a URI. The
 form context is the resource on which the operation is ultimately
 performed. To perform the operation, an agent needs to construct a
 request with the specified method as the request method and the
 specified submission target as the request URI. Usually, the
 submission target is the same resource as the form context, but may
 be a different resource. Constructing and sending the request is
 called _submitting the form_.

 A form can occur as a top-level element in a document or as a nested
 element within a link. When a form occurs as a top-level element,
 the form context implicitly is the document’s retrieval context.
 When a form occurs nested within a link, the form context is the link
 target of the enclosing link.

Amsüss & Fossati Expires 5 September 2024 [Page 12]

Internet-Draft Constrained RESTful Application Language March 2024

2.7. Form Fields

 Form fields can be used to provide more detailed instructions to
 agents for constructing the request when submitting a form. For
 example, a form field could instruct an agent to include a certain
 payload or header field in the request. A payload could, for
 instance, be described by form fields providing acceptable media
 types, a reference to schema information, or a number of individual
 data items that the agents needs to supply. Form fields can be
 specific to the Web transfer protocol that is used for submitting the
 form.

 A form field is a pair of a _form field type_ and a _form field
 value_. Additionally, a form field may have a list of zero or more
 nested elements that further describe the form field value.

 A form field type identifies the semantics of the form field. Form
 field types are predicates and thus URIs. Form field values are
 URIs, blank nodes or literals.

2.8. Navigation

 An agent begins the interaction with an application by performing a
 GET request on an _entry point URI_. The entry point URI is the only
 URI that the agent is expected to know beforehand. From then on, the
 agent is expected to make all requests by following links and
 submitting forms that are provided in the responses resulting from
 the requests. The entry point URI could be obtained through some
 discovery process or manual configuration.

 If dereferencing the entry point URI yields a CoRAL document (or any
 other representation that implements the CoRAL data and interaction
 model), the agent makes this document the active representation in
 the browsing context and proceeds as follows:

 1. The first step for the agent is to decide what to do next, i.e.,
 which type of link to follow or form to submit, based on the link
 relation types and operation types it understands.

 An agent may follow a link without understanding the link
 relation type, e.g., for the sake of pre-fetching or building a
 search index. However, an agent MUST NOT submit a form without
 understanding the operation type.

Amsüss & Fossati Expires 5 September 2024 [Page 13]

Internet-Draft Constrained RESTful Application Language March 2024

 2. The agent then finds the link(s) or form(s) with the respective
 type in the active representation. This may yield one or more
 candidates, from which the agent will have to select the most
 appropriate one. The set of candidates can be empty, for
 example, when an application state transition is not supported or
 not allowed.

 3. The agent selects one of the candidates based on the metadata
 associated them (in the form of form fields and nested elements)
 and their order of appearance in the document. Examples for
 relevant metadata could include the indication of a media type
 for the target resource representation, the URI scheme of a
 target resource, or the request method of an operation.

 4. The agent obtains the _request URI_ from the link target or
 submission target. Fragment identifiers are not part of the
 request URI and MUST be separated from the rest of the URI prior
 to the next step.

 5. The agent constructs a new request with the request URI. If the
 agent is following a link, then the request method MUST be GET.
 If the agent is submitting a form, then the request method MUST
 be the one supplied by the form.

 The agent SHOULD set HTTP header fields and CoAP request options
 according to the metadata (e.g., set the HTTP Accept header field
 or the CoAP Accept option when a media type for the target
 resource is provided). Depending on the operation type of a
 form, the agent may also have to include a request payload that
 matches the specifications of some form fields.

 6. The agent sends the request and receives the response.

 7. If a fragment identifier was separated from the request URI, the
 agent selects the fragment indicated by the fragment identifier
 within the received representation according to the semantics of
 its media type.

 8. The agent updates the browsing context by making the (selected
 fragment of the) received representation the active
 representation.

 9. Finally, the agent processes the representation according to the
 semantics of its media type. If the representation is a CoRAL
 document (or any other representation that implements the CoRAL
 data and interaction model), the agent again has the choice of
 what to do next. Go to step 1.

Amsüss & Fossati Expires 5 September 2024 [Page 14]

Internet-Draft Constrained RESTful Application Language March 2024

2.9. History Traversal

 A browsing context has a _session history_, which lists the resource
 representations that the agent has processed, is processing, or will
 process.

 A session history consists of session history entries. The number of
 session history entries may be limited and dependent on the agent.
 An agent with severe constraints on memory size might only have
 enough memory for the most recent entry.

 An entry in the session history consists of a resource representation
 and the representation’s retrieval context. New entries are added to
 the session history as the agent navigates from resource to resource,
 discarding entries that are no longer used.

 An agent can decide to navigate a browsing context (in addition to
 following links and submitting forms) by _traversing the session
 history_. For example, when an agent receives a response with a
 representation that does not contain any further links or forms, it
 can navigate back to a resource representation it has visited earlier
 and make that the active representation.

 Traversing the history SHOULD take advantage of caches to avoid new
 requests. An agent may reissue a safe request (e.g., a GET) when it
 does not have a fresh representation in its cache. An agent MUST NOT
 reissue an unsafe request (e.g., a PUT or POST) unless it actually
 intends to perform that operation again.

2.10. Designing interactions in an Open World

 CoRAL can be used to build both open world systems ("if something is
 not said, it may or may not be true") and closed world systems ("if
 something is not said, it is not true").

 In constrained environments (and the web in general), partial
 representations are often used for efficiency. For example, a device
 can query another for particular statements using a yet to be defined
 FETCH version of CoRAL. It is expected that some tools (e.g., server
 or agent libraries) require the application to be tolerant of
 unprocessed statements. Furthermore, it can be easier to evolve
 applications and their packing dictionaries if loss of statements
 leads to graceful degradation.

Amsüss & Fossati Expires 5 September 2024 [Page 15]

Internet-Draft Constrained RESTful Application Language March 2024

 Therefore, it is convenient to build applications on open world
 assumptions. Such applications can only use statements that add
 possibilities, and none that limit interactions. Any limitations
 need to be encoded in statements the agent necesarily has to perform
 an action in the first place, and can then be relaxed in additional
 statements.

 For example, an application built with open-world assumptions can not
 create a form that allows feeding gremlins, and in an additional
 statement (e.g., a form field) forbid after midnight. Instead, the
 application needs to describe a limited-feeding form, which can only
 be used if any of the attached conditions is met; the condition
 "before midnight" can then be expressed in an additional statement.

3. Binary Format

 This section defines the encoding of documents in the CoRAL binary
 format.

 A document in the binary format is encoded in Concise Binary Object
 Representation (CBOR) [RFC8949].

 The CBOR structure of a document is presented in the Concise Data
 Definition Language (CDDL) [RFC8610]. All CDDL rules not defined in
 this document are defined in Appendix D of [RFC8610].

 The media type of documents in the binary format is application/
 coral+cbor.

3.1. Data Structure

 The data structure of a document in the binary format is made up of
 three kinds of elements: links, forms (as short hands for the
 statements they are constructed of), and (as an extension to the
 CoRAL data model) directives. Directives provide a way to encode URI
 references with a common base more efficiently.

3.1.1. Documents

 A document in the binary format is encoded as a CBOR array that
 contains zero or more elements. An element is either a link, a form,
 or a directive.

 document = [*element]
 element = link / form / directive

Amsüss & Fossati Expires 5 September 2024 [Page 16]

Internet-Draft Constrained RESTful Application Language March 2024

 The elements are processed in the order they appear in the document.
 Document processors need to maintain an _environment_ while iterating
 an array of elements. The environment consists of two variables: the
 current context and the _current base_. The current context and the
 current base are both initially set to the document’s retrieval
 context.

3.1.2. Directives

 Directives provide the ability to manipulate the environment while
 processing elements.

 There is a single type of directives available: the Base directive.

 directive = base-directive

 It is an error if a document processor encounters any other type of
 directive.

3.1.2.1. Base Directives

 A Base directive is encoded as a CBOR array that contains the
 unsigned integer 1 and a base URI.

 base-directive = [1, baseURI]

 The base URI is denoted by a Constrained Resource Identifier (CRI)
 reference [I-D.ietf-core-href]. The CRI reference MUST be resolved
 against the current context (not the current base).

 baseURI = CRI-Reference
 CRI-Reference = <Defined in Section XX of RFC XXXX>

 The directive is processed by resolving the CRI reference against the
 current context and assigning the result to the current base.

3.1.3. URIs

 URIs in links and forms are encoded as CRI references.

 URI = CRI-Reference

 A CRI reference is processed by resolving it to a URI as specified in
 Section 5.2 of [I-D.ietf-core-href] using the current base.

Amsüss & Fossati Expires 5 September 2024 [Page 17]

Internet-Draft Constrained RESTful Application Language March 2024

3.1.4. Links

 A link is encoded as a CBOR array that contains the unsigned integer
 2, the link relation type, the link target, and, optionally, an array
 of zero or more nested elements.

 link = [2, relation-type, link-target, ?[*element]]

 The link relation type is a URI.

 relation-type = URI

 The link target is either a URI, a literal value, or null.

 link-target = URI / literal / null
 literal = bool / int / float / time / bytes / text

 The nested elements, if any, MUST be processed in a fresh
 environment. The current context is set to the link target of the
 enclosing link. The current base is initially set to the link
 target, if the link target is a URI; otherwise, it is set to the
 current base of the current environment.

3.1.5. Forms

 A form is encoded as a CBOR array that contains the unsigned integer
 3, the operation type, the submission target, and, optionally, an
 array of zero or more form fields.

 form = [3, operation-type, submission-target, ?[*form-field]]

 The operation type is a URI.

 operation-type = URI

 The submission target is a URI.

 submission-target = URI

 The request method is either implied by the operation type or encoded
 as a form field. If both are given, the form field takes precedence
 over the operation type. Either way, the method MUST be applicable
 to the Web transfer protocol identified by the scheme of the
 submission target.

Amsüss & Fossati Expires 5 September 2024 [Page 18]

Internet-Draft Constrained RESTful Application Language March 2024

 The form fields, if any, MUST be processed in a fresh environment.
 The current context is set to an unspecified URI that represents the
 enclosing form. The current base is initially set to the submission
 target of the enclosing form.

3.1.6. Form Fields

 A form field is encoded as a CBOR sequence that consists of a form
 field type, a form field value, and, optionally, an array of zero or
 more nested elements.

 form-field = (form-field-type, form-field-value, ?[*element])

 The form field type is a URI.

 form-field-type = URI

 The form field value is either a URI, a literal value, or null.

 form-field-value = URI / literal / null

 The nested elements, if any, MUST be processed in a fresh
 environment. The current context is set to the form field value of
 the enclosing form field. The current base is initially set to the
 form field value, if the form field value is a URI; otherwise, it is
 set to the current base of the current environment.

3.2. Dictionary Compression

 A document in the binary format MAY reference values from an external
 dictionary using Packed CBOR [I-D.ietf-cbor-packed]. This helps to
 reduce representation size and processing cost.

 Dictionary references can be used subject to [yet to be defined]
 profiling.

 Implementers should note that Packed CBOR is not designed to be
 uncompressed, but to be used in a compressed form. In particular,
 constrained devices may operate without even knowing what a given
 dictionary entry expands to (as long as they know its meaning) .

Amsüss & Fossati Expires 5 September 2024 [Page 19]

Internet-Draft Constrained RESTful Application Language March 2024

3.2.1. Media Type Parameter

 The application/coral+cbor media type for documents in the binary
 format is defined to have a dictionary parameter that specifies the
 dictionary in use. The dictionary is identified by a URI. For
 example, a CoRAL document that uses the dictionary identified by the
 URI <http://example.com/dictionary> would have the following content
 type:

 application/coral+cbor;dictionary="http://example.com/dictionary"

 The URI serves only as an identifier; it does not necessarily have to
 be dereferencable (or even use a dereferencable URI scheme). It is
 permissible, though, to use a dereferencable URI and to serve a
 representation that provides information about the dictionary in a
 machine- or human-readable way. (The representation format and
 security considerations of such a representation are outside the
 scope of this document.)

 For simplicity, a CoRAL document can reference values only from one
 dictionary; the value of the dictionary parameter MUST be a single
 URI.

 The dictionary parameter is OPTIONAL. If it is absent, the default
 dictionary specified in Appendix B of this document is assumed.

 Once a dictionary has made an assignment, the assignment MUST NOT be
 changed or removed. A dictionary, however, may contain additional
 information about an assignment, which may change over time.

 In CoAP, media types (including specific values for their parameters,
 plus an optional content coding) are encoded as an unsigned integer
 called the "content format" of a representation. For use with CoAP,
 each new CoRAL dictionary therefore needs to have a new content
 format registered in the CoAP Content Formats Registry
 [CORE-PARAMETERS].

3.3. Export Interface

 The definition of documents, links, and forms in the CoRAL binary
 format can be reused in other CBOR-based protocols. Specifications
 using CDDL should reference the following rules for this purpose:

 CoRAL-Document = document
 CoRAL-Link = link
 CoRAL-Form = form

Amsüss & Fossati Expires 5 September 2024 [Page 20]

Internet-Draft Constrained RESTful Application Language March 2024

 For each embedded document, link, and form, the CBOR-based protocol
 needs to specify the document retrieval context, link context, and
 form context, respectively.

4. Document Semantics

4.1. Submitting Documents

 By default, a CoRAL document is a representation that captures the
 current state of a resource. The meaning of a CoRAL document changes
 when it is submitted in a request. Depending on the request method,
 the CoRAL document can capture the intended state of a resource (PUT)
 or be subject to application-specific processing (POST).

4.1.1. PUT Requests

 A PUT request with a CoRAL document enclosed in the request payload
 requests that the state of the target resource be created or replaced
 with the state described by the CoRAL document. A successful PUT of
 a CoRAL document generally means that a subsequent GET on that same
 target resource would result in an equivalent document being sent in
 a success response.

 An origin server SHOULD verify that a submitted CoRAL document is
 consistent with any constraints the server has for the target
 resource. When a document is inconsistent with the target resource,
 the origin server SHOULD either make it consistent (e.g., by removing
 inconsistent elements) or respond with an appropriate error message
 containing sufficient information to explain why the document is
 unsuitable.

 The retrieval context and the base URI of a CoRAL document in a PUT
 are the request URI of the request.

4.1.2. POST Requests

 A POST request with a CoRAL document enclosed in the request payload
 requests that the target resource process the CoRAL document
 according to the resource’s own specific semantics.

 The retrieval context of a CoRAL document in a POST is defined by the
 target resource’s processing semantics; it may be an unspecified URI.
 The base URI of the document is the request URI of the request.

Amsüss & Fossati Expires 5 September 2024 [Page 21]

Internet-Draft Constrained RESTful Application Language March 2024

4.2. Returning Documents

 In a response, the meaning of a CoRAL document changes depending on
 the request method and the response status code. For example, a
 CoRAL document in a successful response to a GET represents the
 current state of the target resource, whereas a CoRAL document in a
 successful response to a POST might represent either the processing
 result or the new resource state. A CoRAL document in an error
 response represents the error condition, usually describing the error
 state and what next steps are suggested for resolving it.

4.2.1. Success Responses

 Success responses have a response status code that indicates that the
 client’s request was successfully received, understood, and accepted
 (2xx in HTTP, 2.xx in CoAP). When the representation in a success
 response does not describe the state of the target resource, it
 describes result of processing the request. For example, when a
 request has been fulfilled and has resulted in one or more new
 resources being created, a CoRAL document in the response can link to
 and describe the resource(s) created.

 The retrieval context and the base URI of a CoRAL document
 representing the current state of a resource are the request URI of
 the request.

 The retrieval context of a CoRAL document representing a processing
 result is an unspecified URI that refers to the processing result
 itself. The base URI of the document is the request URI of the
 request.

4.2.2. Redirection Responses

 Redirection responses have a response status code that indicates that
 further action needs to be taken by the agent (3xx in HTTP). A
 redirection response, for example, might indicate that the target
 resource is available at a different URI or the server offers a
 choice of multiple matching resources, each with its own specific
 URI.

 In the latter case, the representation in the response might contain
 a list of resource metadata and URI references (i.e., links) from
 which the agent can choose the most preferred one.

 The retrieval context of a CoRAL document representing such multiple
 choices in a redirection response is an unspecified URI that refers
 to the redirection itself. The base URI of the document is the
 request URI of the request.

Amsüss & Fossati Expires 5 September 2024 [Page 22]

Internet-Draft Constrained RESTful Application Language March 2024

4.2.3. Error Responses

 Error response have a response status code that indicates that either
 the request cannot be fulfilled or the server failed to fulfill an
 apparently valid request (4xx or 5xx in HTTP, 4.xx or 5.xx in CoAP).
 A representation in an error response describes the error condition.

 The retrieval context of a CoRAL document representing such an error
 condition is an unspecified URI that refers to the error condition
 itself. The base URI of the document is the request URI of the
 request.

5. Usage Considerations

 This section discusses some considerations in creating CoRAL-based
 applications and vocabularies.

5.1. Specifying CoRAL-based Applications

 CoRAL-based applications naturally implement the Web architecture
 [W3C.REC-webarch-20041215] and thus are centered around orthogonal
 specifications for identification, interaction, and representation:

 * Resources are identified by URIs or represented by literal values.

 * Interactions are based on the hypermedia interaction model of the
 Web and the methods provided by the Web transfer protocol. The
 semantics of possible interactions are identified by link relation
 types and operation types.

 * Representations are CoRAL documents encoded in the binary format
 defined in Section 3. Depending on the application, additional
 representation formats may be used.

5.1.1. Application Interfaces

 Specifications for CoRAL-based applications need to list the specific
 components used in the application interface and their identifiers.
 This should include the following items:

 * The Web transfer protocols supported.

 * The representation formats used, identified by their Internet
 media types, including the CoRAL serialization formats.

 * The link relation types used.

Amsüss & Fossati Expires 5 September 2024 [Page 23]

Internet-Draft Constrained RESTful Application Language March 2024

 * The operation types used. Additionally, for each operation type,
 the permissible request methods.

 * The form field types used. Additionally, for each form field
 type, the permissible form field values.

5.1.2. Resource Identifiers

 URIs are a cornerstone of Web-based applications. They enable the
 uniform identification of resources and are used every time a client
 interacts with a server or a resource representation needs to refer
 to another resource.

 URIs often include structured application data in the path and query
 components, such as paths in a filesystem or keys in a database. It
 is a common practice in HTTP-based application programming interfaces
 (APIs) to make this part of the application specification, i.e., to
 prescribe fixed URI templates that are hard-coded in implementations.
 However, there are a number of problems with this practice [RFC8820].

 In CoRAL-based applications, resource names are therefore not part of
 the application specification --- they are an implementation detail.
 The specification of a CoRAL-based application MUST NOT mandate any
 particular form of resource name structure.

 [RFC8820] describes the problematic practice of fixed URI structures
 in more detail and provides some acceptable alternatives.

5.1.3. Implementation Limits

 This document places no restrictions on the number of elements in a
 CoRAL document or the depth of nested elements. Applications using
 CoRAL (in particular those running in constrained environments) may
 limit these numbers and define specific implementation limits that an
 implementation must support at least to be interoperable.

 Applications may also mandate the following and other restrictions:

 * Use of only either HTTP or CoAP as the supported Web transfer
 protocol.

 * Use of only dictionary references in the binary format for certain
 vocabulary.

 * Use of URI references and CRI references only up to a specific
 length.

Amsüss & Fossati Expires 5 September 2024 [Page 24]

Internet-Draft Constrained RESTful Application Language March 2024

5.2. Minting Vocabulary

 New link relation types, operation types, and form field types can be
 minted by defining a URI that uniquely identifies the item. Although
 the URI may point to a resource that contains a definition of the
 semantics, clients SHOULD NOT automatically access that resource to
 avoid overburdening its server. The URI SHOULD be under the control
 of the person or party defining it, or be delegated to them.

 To avoid interoperability problems, it is RECOMMENDED that only URIs
 are minted that are normalized according to Section 6.2 of [RFC3986].
 This is easily achieved when the URIs are defined in CRI form (in
 which they also become part of the dictionary), as this avoids many
 common non-normalized forms of URIs by construction.

 Non-normalized forms that are still to be avoided include:

 * Uppercase characters in scheme names and domain names

 * Explicitly stated HTTP default port (e.g., <http://example.com/>
 is preferable over <http://example.com:80/>)

 * Punycode-encoding of Internationalized Domain Names in URIs

 * URIs that are not in Unicode Normalization Form C

 URIs that identify vocabulary do not need to be registered. The
 inclusion of domain names in URIs allows for the decentralized
 creation of new URIs without the risk of collisions.

 However, URIs can be relatively verbose and impose a high overhead on
 a representation. This can be a problem in constrained environments
 [RFC7228]. Therefore, CoRAL alternatively allows the use of packed
 references that abbreviate CBOR data items from a dictionary, as
 specified in Section 3.2. These impose a much smaller overhead but
 instead need to be assigned by an authority to avoid collisions.

5.3. Expressing Registered Link Relation Types

 Link relation types registered in the Link Relations Registry
 [LINK-RELATIONS], such as collection [RFC6573] or icon
 [W3C.REC-html52-20171214], can be used in CoRAL by appending the
 registered name to the URI <http://www.iana.org/assignments/
 relation/>:

Amsüss & Fossati Expires 5 September 2024 [Page 25]

Internet-Draft Constrained RESTful Application Language March 2024

 #using iana = <http://www.iana.org/assignments/relation/>

 iana:collection </items>
 iana:icon </favicon.png>

 The convention of appending the relation type name to the prefix
 <http://www.iana.org/assignments/relation/> to form URIs is adopted
 from the Atom Syndication Format [RFC4287]; see also Appendix A.2 of
 [RFC8288].

 Note that registered relation type names are required to be lowercase
 ASCII letters (see Section 3.3 of [RFC8288]).

5.4. Expressing Simple RDF Statements

 In RDF [W3C.REC-rdf11-concepts-20140225], a statement says that some
 relationship, indicated by a predicate, holds between two resources.
 Existing RDF vocabularies can therefore be a good source for link
 relation types that describe resource metadata. For example, a CoRAL
 document could use the FOAF vocabulary [FOAF] to describe the person
 or software that made it:

 #using rdf = <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
 #using foaf = <http://xmlns.com/foaf/0.1/>

 foaf:maker null {
 rdf:type <http://xmlns.com/foaf/0.1/Person>
 foaf:familyName "Hartke"
 foaf:givenName "Klaus"
 foaf:mbox <mailto:klaus.hartke@ericsson.com>
 }

5.5. Expressing Natural Language Texts

 Text strings can be associated with a Language Tag [RFC5646] and a
 base text direction (right-to-left or left-to-right) by using CBOR
 tag 38.

 #using base = <http://coreapps.org/base#>
 #using iana = <http://www.iana.org/assignments/relation/>

 iana:terms-of-service </tos> {
 base:title 38(["de", "Nutzungsbedingungen"])
 base:title 38(["en-US", "Terms of use"])
 base:title 38(["az", "ltr", "stifad rtlri"])
 }

Amsüss & Fossati Expires 5 September 2024 [Page 26]

Internet-Draft Constrained RESTful Application Language March 2024

 [Maturity note: Whether direction will actually be expressed in an
 updated tag 38, how precisely that is done, or whether a new tag will
 be allocated for text with direction is currently still under
 discussion.]

5.6. Embedding Representations in CoRAL

 When a document links to many Web resources and an agent needs a
 representation of each of them, it can be inefficient to retrieve
 each representations individually. To minimize round-trips,
 documents can embed representations of resources.

 A representation can be embedded in a document by including a link of
 type <http://coreapps.org/base#representation>:

 #using base = <http://coreapps.org/base#>
 #using http = <http://coreapps.org/http#>
 #using iana = <http://www.iana.org/assignments/relation/>

 iana:icon </favicon.gif> {
 base:representation
 b64’R0lGODlhAQABAAAAACH5BAEKAAEALAAAAAABAAEAAAIAOw==’ {
 http:type "image/gif"
 }
 }

 An embedded representation SHOULD have a nested link of type
 <http://coreapps.org/http#type> or <http://coreapps.org/coap#type>
 that indicates the content type of the representation.

 The link relation types <http://coreapps.org/base#representation>,
 <http://coreapps.org/http#type>, and <http://coreapps.org/coap#type>
 are defined in Appendix A.

6. Security Considerations

 CoRAL document processors need to be fully prepared for all types of
 hostile input that may be designed to corrupt, overrun, or achieve
 control of the agent processing the document. For example, hostile
 input may be constructed to overrun buffers, allocate very big data
 structures, or exhaust the stack depth by setting up deeply nested
 elements. Processors need to have appropriate resource management to
 mitigate these attacks.

Amsüss & Fossati Expires 5 September 2024 [Page 27]

Internet-Draft Constrained RESTful Application Language March 2024

 CoRAL serialization formats intentionally do not feature the
 equivalent of XML entity references so as to preclude the entire
 class of attacks relating to them, such as exponential XML entity
 expansion ("billion laughs") [CAPEC-197] and malicious XML entity
 linking [CAPEC-201].

 Implementers of the CoRAL binary format need to consider the security
 aspects of decoding CBOR. See Section 10 of [RFC8949] for security
 considerations relating to CBOR. In particular, different number
 encodings for the same numeric value are not equivalent in CoRAL
 (e.g., a floating-point value of 0.0 is not the same as the integer
 0).

 CoRAL makes extensive use of resource identifiers. See Section 7 of
 [RFC3986] for security considerations relating to URIs. See
 Section 7 of [I-D.ietf-core-href] for security considerations
 relating to CRIs.

 The security of applications using CoRAL can depend on the proper
 preparation and comparison of internationalized strings. For
 example, such strings can be used to make authentication and
 authorization decisions, and the security of an application could be
 compromised if an entity providing a given string is connected to the
 wrong account or online resource based on different interpretations
 of the string. See [RFC6943] for security considerations relating to
 identifiers in URIs and other strings.

 CoRAL is intended to be used in conjunction with a Web transfer
 protocol like HTTP or CoAP. See Section 9 of [RFC7230], Section 9 of
 [RFC7231], etc., for security considerations relating to HTTP. See
 Section 11 of [RFC7252] for security considerations relating to CoAP.

 CoRAL does not define any specific mechanisms for protecting the
 confidentiality and integrity of CoRAL documents. It relies on
 security mechanisms on the application layer or transport layer for
 this, such as Transport Layer Security (TLS) [RFC8446].

 CoRAL documents and the structure of a web of resources revealed from
 automatically following links can disclose personal information and
 other sensitive information. Implementations need to prevent the
 unintentional disclosure of such information. See Section 9 of
 [RFC7231] for additional considerations.

 Applications using CoRAL ought to consider the attack vectors opened
 by automatically following, trusting, or otherwise using links and
 forms in CoRAL documents. See Section 5 of [RFC8288] for related
 considerations.

Amsüss & Fossati Expires 5 September 2024 [Page 28]

Internet-Draft Constrained RESTful Application Language March 2024

 In particular, when a CoRAL document is the representation of a
 resource, the server that is authoritative for that resource may not
 necessarily be authoritative for nested elements in the document. In
 this case, unless an application defines specific rules, any link or
 form where the link/form context and the document’s retrieval context
 do not share the same Web Origin [RFC6454] should be discarded
 ("same-origin policy").

7. IANA Considerations

7.1. Media Type "application/coral+cbor"

 This document registers the media type application/coral+cbor
 according to the procedures of [RFC6838].

 Type name:
 application

 Subtype name:
 coral+cbor

 Required parameters:
 N/A

 Optional parameters:
 dictionary - See Section 3.2 of [I-D.ietf-core-coral].

 Encoding considerations:
 binary - See Section 3 of [I-D.ietf-core-coral].

 Security considerations:
 See Section 6 of [I-D.ietf-core-coral].

 Interoperability considerations:
 N/A

 Published specification:
 [I-D.ietf-core-coral]

 Applications that use this media type:
 See Section 1 of [I-D.ietf-core-coral].

 Fragment identifier considerations:
 As specified for application/cbor.

 Additional information:
 Deprecated alias names for this type: N/A
 Magic number(s): N/A

Amsüss & Fossati Expires 5 September 2024 [Page 29]

Internet-Draft Constrained RESTful Application Language March 2024

 File extension(s): .coral.cbor
 Macintosh file type code(s): N/A

 Person & email address to contact for further information:
 See the Author’s Address section of [I-D.ietf-core-coral].

 Intended usage:
 COMMON

 Restrictions on usage:
 N/A

 Author:
 See the Author’s Address section of [I-D.ietf-core-coral].

 Change controller:
 IESG

 Provisional registration?
 No

7.2. CoAP Content Formats

 This document registers CoAP content formats for the content types
 application/coral+cbor and text/coral according to the procedures of
 [RFC7252].

 * Content Type: application/coral+cbor
 Content Coding: identity
 ID: TBD3
 Reference: [I-D.ietf-core-coral]

 [[NOTE TO RFC EDITOR: Please replace all occurrences of TBD3 in this
 document with the code points assigned by IANA.]]

 [[NOTE TO IMPLEMENTERS: Experimental implementations may use content
 format ID 65087 for application/coral+cbor until IANA has assigned
 code points.]]

8. References

8.1. Normative References

Amsüss & Fossati Expires 5 September 2024 [Page 30]

Internet-Draft Constrained RESTful Application Language March 2024

 [I-D.bormann-cbor-edn-literals]
 Bormann, C., "Application-Oriented Literals in CBOR
 Extended Diagnostic Notation", Work in Progress, Internet-
 Draft, draft-bormann-cbor-edn-literals-02, 28 March 2023,
 <https://datatracker.ietf.org/doc/html/draft-bormann-cbor-
 edn-literals-02>.

 [I-D.ietf-cbor-packed]
 Bormann, C. and M. Gütschow, "Packed CBOR", Work in
 Progress, Internet-Draft, draft-ietf-cbor-packed-12, 2
 March 2024, <https://datatracker.ietf.org/doc/html/draft-
 ietf-cbor-packed-12>.

 [I-D.ietf-core-href]
 Bormann, C. and H. Birkholz, "Constrained Resource
 Identifiers", Work in Progress, Internet-Draft, draft-
 ietf-core-href-14, 9 January 2024,
 <https://datatracker.ietf.org/doc/html/draft-ietf-core-
 href-14>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/rfc/rfc2119>.

 [RFC3339] Klyne, G. and C. Newman, "Date and Time on the Internet:
 Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002,
 <https://www.rfc-editor.org/rfc/rfc3339>.

 [RFC3629] Yergeau, F., "UTF-8, a transformation format of ISO
 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November
 2003, <https://www.rfc-editor.org/rfc/rfc3629>.

 [RFC3986] Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform
 Resource Identifier (URI): Generic Syntax", STD 66,
 RFC 3986, DOI 10.17487/RFC3986, January 2005,
 <https://www.rfc-editor.org/rfc/rfc3986>.

 [RFC4648] Josefsson, S., "The Base16, Base32, and Base64 Data
 Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006,
 <https://www.rfc-editor.org/rfc/rfc4648>.

 [RFC5234] Crocker, D., Ed. and P. Overell, "Augmented BNF for Syntax
 Specifications: ABNF", STD 68, RFC 5234,
 DOI 10.17487/RFC5234, January 2008,
 <https://www.rfc-editor.org/rfc/rfc5234>.

Amsüss & Fossati Expires 5 September 2024 [Page 31]

Internet-Draft Constrained RESTful Application Language March 2024

 [RFC5646] Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying
 Languages", BCP 47, RFC 5646, DOI 10.17487/RFC5646,
 September 2009, <https://www.rfc-editor.org/rfc/rfc5646>.

 [RFC6454] Barth, A., "The Web Origin Concept", RFC 6454,
 DOI 10.17487/RFC6454, December 2011,
 <https://www.rfc-editor.org/rfc/rfc6454>.

 [RFC6657] Melnikov, A. and J. Reschke, "Update to MIME regarding
 "charset" Parameter Handling in Textual Media Types",
 RFC 6657, DOI 10.17487/RFC6657, July 2012,
 <https://www.rfc-editor.org/rfc/rfc6657>.

 [RFC6838] Freed, N., Klensin, J., and T. Hansen, "Media Type
 Specifications and Registration Procedures", BCP 13,
 RFC 6838, DOI 10.17487/RFC6838, January 2013,
 <https://www.rfc-editor.org/rfc/rfc6838>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/rfc/rfc8174>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/rfc/rfc8610>.

 [RFC8949] Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", STD 94, RFC 8949,
 DOI 10.17487/RFC8949, December 2020,
 <https://www.rfc-editor.org/rfc/rfc8949>.

 [Unicode] The Unicode Consortium, "The Unicode Standard, Version
 13.0.0", ISBN 978-1-936213-26-9, March 2020,
 <https://www.unicode.org/versions/Unicode13.0.0/>.

8.2. Informative References

 [CAPEC-197]
 MITRE, "CAPEC-197: XML Entity Expansion", September 2019,
 <https://capec.mitre.org/data/definitions/197.html>.

 [CAPEC-201]
 MITRE, "CAPEC-201: XML Entity Linking", September 2019,
 <https://capec.mitre.org/data/definitions/201.html>.

Amsüss & Fossati Expires 5 September 2024 [Page 32]

Internet-Draft Constrained RESTful Application Language March 2024

 [CORE-PARAMETERS]
 IANA, "Constrained RESTful Environments (CoRE)
 Parameters",
 <http://www.iana.org/assignments/core-parameters>.

 [FOAF] Brickley, D. and L. Miller, "FOAF Vocabulary Specification
 0.99", January 2014,
 <http://xmlns.com/foaf/spec/20140114.html>.

 [HAL] Kelly, M., "JSON Hypertext Application Language", Work in
 Progress, Internet-Draft, draft-kelly-json-hal-11, 19
 October 2023, <https://datatracker.ietf.org/doc/html/
 draft-kelly-json-hal-11>.

 [HTTP-METHODS]
 IANA, "Hypertext Transfer Protocol (HTTP) Method
 Registry", <http://www.iana.org/assignments/http-methods>.

 [I-D.ietf-httpapi-linkset]
 Wilde, E. and H. Van de Sompel, "Linkset: Media Types and
 a Link Relation Type for Link Sets", Work in Progress,
 Internet-Draft, draft-ietf-httpapi-linkset-10, 5 May 2022,
 <https://datatracker.ietf.org/doc/html/draft-ietf-httpapi-
 linkset-10>.

 [LINK-RELATIONS]
 IANA, "Link Relations",
 <http://www.iana.org/assignments/link-relations>.

 [MEDIA-TYPES]
 IANA, "Media Types",
 <http://www.iana.org/assignments/media-types>.

 [RFC4287] Nottingham, M., Ed. and R. Sayre, Ed., "The Atom
 Syndication Format", RFC 4287, DOI 10.17487/RFC4287,
 December 2005, <https://www.rfc-editor.org/rfc/rfc4287>.

 [RFC5789] Dusseault, L. and J. Snell, "PATCH Method for HTTP",
 RFC 5789, DOI 10.17487/RFC5789, March 2010,
 <https://www.rfc-editor.org/rfc/rfc5789>.

 [RFC6573] Amundsen, M., "The Item and Collection Link Relations",
 RFC 6573, DOI 10.17487/RFC6573, April 2012,
 <https://www.rfc-editor.org/rfc/rfc6573>.

 [RFC6690] Shelby, Z., "Constrained RESTful Environments (CoRE) Link
 Format", RFC 6690, DOI 10.17487/RFC6690, August 2012,
 <https://www.rfc-editor.org/rfc/rfc6690>.

Amsüss & Fossati Expires 5 September 2024 [Page 33]

Internet-Draft Constrained RESTful Application Language March 2024

 [RFC6943] Thaler, D., Ed., "Issues in Identifier Comparison for
 Security Purposes", RFC 6943, DOI 10.17487/RFC6943, May
 2013, <https://www.rfc-editor.org/rfc/rfc6943>.

 [RFC7089] Van de Sompel, H., Nelson, M., and R. Sanderson, "HTTP
 Framework for Time-Based Access to Resource States --
 Memento", RFC 7089, DOI 10.17487/RFC7089, December 2013,
 <https://www.rfc-editor.org/rfc/rfc7089>.

 [RFC7228] Bormann, C., Ersue, M., and A. Keranen, "Terminology for
 Constrained-Node Networks", RFC 7228,
 DOI 10.17487/RFC7228, May 2014,
 <https://www.rfc-editor.org/rfc/rfc7228>.

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7231>.

 [RFC7252] Shelby, Z., Hartke, K., and C. Bormann, "The Constrained
 Application Protocol (CoAP)", RFC 7252,
 DOI 10.17487/RFC7252, June 2014,
 <https://www.rfc-editor.org/rfc/rfc7252>.

 [RFC8132] van der Stok, P., Bormann, C., and A. Sehgal, "PATCH and
 FETCH Methods for the Constrained Application Protocol
 (CoAP)", RFC 8132, DOI 10.17487/RFC8132, April 2017,
 <https://www.rfc-editor.org/rfc/rfc8132>.

 [RFC8288] Nottingham, M., "Web Linking", RFC 8288,
 DOI 10.17487/RFC8288, October 2017,
 <https://www.rfc-editor.org/rfc/rfc8288>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/rfc/rfc8446>.

 [RFC8820] Nottingham, M., "URI Design and Ownership", BCP 190,
 RFC 8820, DOI 10.17487/RFC8820, June 2020,
 <https://www.rfc-editor.org/rfc/rfc8820>.

Amsüss & Fossati Expires 5 September 2024 [Page 34]

Internet-Draft Constrained RESTful Application Language March 2024

 [UAX31] The Unicode Consortium, "Unicode Standard Annex #31:
 Unicode Identifier and Pattern Syntax", Revision 33, March
 2020, <https://www.unicode.org/reports/tr31/tr31-33.html>.

 [UTR36] The Unicode Consortium, "Unicode Technical Report #36:
 Unicode Security Considerations", Revision 15, September
 2014, <https://www.unicode.org/reports/tr36/tr36-15.html>.

 [UTS39] The Unicode Consortium, "Unicode Technical Standard #39:
 Unicode Security Mechanisms", Revision 22, February 2020,
 <https://www.unicode.org/reports/tr39/tr39-22.html>.

 [W3C.REC-html52-20171214]
 Danilo, A., Ed., Eicholz, A., Ed., Moon, S., Ed.,
 Faulkner, S., Ed., and T. Leithead, Ed., "HTML 5.2", W3C
 REC REC-html52-20171214, W3C REC-html52-20171214, 14
 December 2017,
 <https://www.w3.org/TR/2017/REC-html52-20171214/>.

 [W3C.REC-rdf-schema-20140225]
 Brickley, D., Ed. and R. Guha, Ed., "RDF Schema 1.1", W3C
 REC REC-rdf-schema-20140225, W3C REC-rdf-schema-20140225,
 25 February 2014,
 <https://www.w3.org/TR/2014/REC-rdf-schema-20140225/>.

 [W3C.REC-rdf11-concepts-20140225]
 Wood, D., Ed., Lanthaler, M., Ed., and R. Cyganiak, Ed.,
 "RDF 1.1 Concepts and Abstract Syntax", W3C REC REC-rdf11-
 concepts-20140225, W3C REC-rdf11-concepts-20140225, 25
 February 2014,
 <https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/>.

 [W3C.REC-turtle-20140225]
 Prud’hommeaux, E., Ed. and G. Carothers, Ed., "RDF 1.1
 Turtle", W3C REC REC-turtle-20140225, W3C REC-turtle-
 20140225, 25 February 2014,
 <https://www.w3.org/TR/2014/REC-turtle-20140225/>.

 [W3C.REC-webarch-20041215]
 Jacobs, I., Ed. and N. Walsh, Ed., "Architecture of the
 World Wide Web, Volume One", W3C REC REC-webarch-20041215,
 W3C REC-webarch-20041215, 15 December 2004,
 <https://www.w3.org/TR/2004/REC-webarch-20041215/>.

Appendix A. Core Vocabulary

 This section defines the core vocabulary for CoRAL: a set of link
 relation types, operation types, and form field types.

Amsüss & Fossati Expires 5 September 2024 [Page 35]

Internet-Draft Constrained RESTful Application Language March 2024

A.1. Base

 Link Relation Types:

 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
 Indicates that the link’s context is an instance of the class
 specified as the link’s target, as defined by RDF Schema
 [W3C.REC-rdf-schema-20140225].

 <http://coreapps.org/base#title>
 Indicates that the link target is a human-readable label (e.g., a
 menu entry).

 The link target MUST be a literal. The text string SHOULD be
 wrapped in a tag indicating language and, if necessary, direction
 if applicable.

 <http://coreapps.org/base#representation>
 Indicates that the link target is a representation of the link
 context.

 The link target MUST be a byte string.

 The representation may be a full, partial, or inconsistent version
 of the representation served from the URI of the resource.

 A link with this link relation type can occur as a top-level
 element in a document or as a nested element within a link. When
 it occurs as a top-level element, it provides an alternate
 representation of the document’s retrieval context. When it
 occurs nested within a link, it provides a representation of link
 target of the enclosing link.

 Operation Types:

 <http://coreapps.org/base#update>
 Indicates that the state of the form’s context can be replaced
 with the state described by a representation submitted to the
 server.

 This operation type defaults to the PUT method [RFC7231] [RFC7252]
 for both HTTP and CoAP. Typical overrides by a form field include
 the PATCH method [RFC5789] [RFC8132] for HTTP and CoAP and the
 iPATCH method [RFC8132] for CoAP.

 <http://coreapps.org/base#search>
 Indicates that the form’s context can be searched by submitting a
 search query.

Amsüss & Fossati Expires 5 September 2024 [Page 36]

Internet-Draft Constrained RESTful Application Language March 2024

 This operation type defaults to the POST method [RFC7231] for HTTP
 and the FETCH method [RFC8132] for CoAP. Typical overrides by a
 form field include the POST method [RFC7252] for CoAP.

A.2. Collections

 Link Relation Types:

 <http://www.iana.org/assignments/relation/item>
 Indicates that the link’s context is a collection and that the
 link’s target is a member of that collection, as defined in
 Section 2.1 of [RFC6573].

 <http://www.iana.org/assignments/relation/collection>
 Indicates that the link’s target is a collection and that the
 link’s context is a member of that collection, as defined in
 Section 2.2 of [RFC6573].

 Operation Types:

 <http://coreapps.org/collections#create>
 Indicates that the form’s context is a collection and that a new
 item can be created in that collection with the state defined by a
 representation submitted to the server.

 This operation type defaults to the POST method [RFC7231]
 [RFC7252] for both HTTP and CoAP.

 <http://coreapps.org/collections#delete>
 Indicates that the form’s context is a member of a collection and
 that the form’s context can be removed from that collection.

 This operation type defaults to the DELETE method [RFC7231]
 [RFC7252] for both HTTP and CoAP.

A.3. HTTP

 Form Field Types:

 <http://coreapps.org/http#method>
 Specifies the HTTP method for the request.

 The form field value MUST be a text string in the format defined
 in Section 4.1 of [RFC7231]. The possible set of values is
 maintained in the HTTP Methods Registry [HTTP-METHODS].

Amsüss & Fossati Expires 5 September 2024 [Page 37]

Internet-Draft Constrained RESTful Application Language March 2024

 A form field of this type MUST NOT occur more than once in a form.
 If absent, it defaults to the request method implied by the form’s
 operation type.

 <http://coreapps.org/http#accept>
 Specifies an acceptable HTTP content type for the request payload.
 There may be multiple form fields of this type. If a form does
 not include a form field of this type, the server accepts any or
 no request payload, depending on the operation type.

 The form field value MUST be a text string in the format defined
 in Section 3.1.1.1 of [RFC7231]. The possible set of media types
 and their parameters is maintained in the Media Types Registry
 [MEDIA-TYPES].

 Link Relation Types:

 <http://coreapps.org/http#type>
 Specifies the HTTP content type of the link context.

 The link target MUST be a text string in the format defined in
 Section 3.1.1.1 of [RFC7231]. The possible set of media types and
 their parameters is maintained in the Media Types Registry
 [MEDIA-TYPES].

A.4. CoAP

 Form Field Types:

 <http://coreapps.org/coap#method>
 Specifies the CoAP method for the request.

 The form field value MUST be an integer identifying a CoAP method
 (e.g., the integer 2 for the POST method). The possible set of
 values is maintained in the CoAP Method Codes Registry
 [CORE-PARAMETERS].

 A form field of this type MUST NOT occur more than once in a form.
 If absent, it defaults to the request method implied by the form’s
 operation type.

 <http://coreapps.org/coap#accept>
 Specifies an acceptable CoAP content format for the request
 payload. There may be multiple form fields of this type. If a
 form does not include a form field of this type, the server
 accepts any or no request payload, depending on the operation
 type.

Amsüss & Fossati Expires 5 September 2024 [Page 38]

Internet-Draft Constrained RESTful Application Language March 2024

 The form field value MUST be an integer identifying a CoAP content
 format. The possible set of values is maintained in the CoAP
 Content Formats Registry [CORE-PARAMETERS].

 Link Relation Types:

 <http://coreapps.org/coap#type>
 Specifies the CoAP content format of the link context.

 The link target MUST be an integer identifying a CoAP content
 format (e.g., the integer 42 for the content type application/
 octet-stream without a content coding). The possible set of
 values is maintained in the CoAP Content Formats Registry
 [CORE-PARAMETERS].

Appendix B. Default Dictionary

 This section defines a default dictionary that is assumed when the
 application/coral+cbor media type is used without a dictionary
 parameter.

 +=====+===+
 | Key | Value |
 +=====+===+
 | 0 | <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> |
 +-----+---+
 | 1 | <http://www.iana.org/assignments/relation/item> |
 +-----+---+
 | 2 | <http://www.iana.org/assignments/relation/collection> |
 +-----+---+
 | 3 | <http://coreapps.org/collections#create> |
 +-----+---+
 | 4 | <http://coreapps.org/base#update> |
 +-----+---+
 | 5 | <http://coreapps.org/collections#delete> |
 +-----+---+
 | 6 | <http://coreapps.org/base#search> |
 +-----+---+
 | 7 | <http://coreapps.org/coap#accept> |
 +-----+---+
 | 8 | <http://coreapps.org/coap#type> |
 +-----+---+
 | 10 | <http://coreapps.org/coap#method> |
 +-----+---+
 | 14 | <http://coreapps.org/base#representation> |
 +-----+---+

 Table 3: Default Dictionary

Amsüss & Fossati Expires 5 September 2024 [Page 39]

Internet-Draft Constrained RESTful Application Language March 2024

Appendix C. Mappings to other formats

 While CoRAL has an information model of its own, its data can be
 converted to different extents with other data formats.

 Using these conversions is generally application specific, i.e., this
 document does not claim equivalence of (say) a given RDF its
 converted CoRAL document, but applications can choose use these
 conversions if the limitations described with the conversion are
 acceptable to them.

C.1. RDF

 [TBD: Expand / introduce the common CURIEs used here.]

 RDF and the CoRAL Basic Information Model can be interconverted
 losslessly, as long as some basic restrictions are met:

 * All involved IRIs (on the RDF side) and CRIs (on the CoRAL side)
 can be converted; that means that round-tripping IRIs through
 CoRAL converts them to the equivalent URIs.

 The precise limitations of what CRIs can not express are described
 in [I-D.ietf-core-href] and out of scope of this document.

 A possible extension to CoRAL that allows tagged URIs in place of
 CRIs could remove this limitation. (CRIs that can not be
 expressed as URIs are not valid anyway).

 * A blank node of CoRAL can only have one incoming edge in
 serialization. RDF documents with multiply connected blank nodes
 need to undergo skolemization before they can be expressed in
 CoRAL.

 * CoRAL supports arbitrary literal objects, including CBOR tags.
 For each object that is used in a literal, a mapping to a datatype
 (typically XSD) needs to be defined.

 When literals are normalized in RDF according to XSD rules, or the
 literal mappings to RDF datatypes are ambiguous on the CoRAL side,
 round-tripping CoRAL through RDF can be lossy to the extent of the
 normalization or ambiguity.

 * As always with expressing arbitrary graphs of the Basic
 Information Model in serialization, if there is no directed tree
 spanning the directed graph, statements need to be introduced to
 reach some topics.

Amsüss & Fossati Expires 5 September 2024 [Page 40]

Internet-Draft Constrained RESTful Application Language March 2024

 Each statement in RDF is mapped to a statement in CoRAL. Any IRI it
 contains in RDF is mapped to an equivalent CRI in CoRAL and vice
 versa. Any blank node of RDF is converted to a blank node
 (serialized as a null) in CoRAL. (Beware that depending on the
 context established in Section 4, the retrieval context may be a URI
 or a blank node). Literals are converted as follows:

 * CBOR text strings are coverted to RDF string literals without a
 language tag.

 * CBOR literals from the following list are converted to their
 corresponding text representations of the datatype from the
 following table:

 +=========================+=========================+
 | CDDL | XSD datatype |
 +=========================+=========================+
 | bool | xsd:boolean |
 +-------------------------+-------------------------+
 | integer | xsd:integer |
 +-------------------------+-------------------------+
 | float | xsd:double |
 +-------------------------+-------------------------+
 | decfrac | xsd:decimal |
 +-------------------------+-------------------------+
 | bytes | xsd:base64Binary or |
 | | xsd:base64hexBinary (?) |
 +-------------------------+-------------------------+
 | tdate | xsd:date |
 +-------------------------+-------------------------+
 | #6.38([lang: tstr, | rdf:langString with |
 | text: tstr]) | lang as language tag |
 +-------------------------+-------------------------+
 | #6.TBD([lang: tstr, | i18n:{lang}_{dir} |
 | dir: tstr, text: tstr]) | |
 +-------------------------+-------------------------+

 Table 4: Mapping between CDDL types and XSD datatypes

 [TBD: Check compatibilities, give type for at least the basic tags.
 Directional text might wind up in tag 38,]

 * RDF literals are mapped to any CoRAL literal that yields an
 equivalent RDF literal in the opposite direction.

Amsüss & Fossati Expires 5 September 2024 [Page 41]

Internet-Draft Constrained RESTful Application Language March 2024

C.1.1. Example

 The FOAF namespace provides this example:

<foaf:Person rdf:about="#danbri" xmlns:foaf="http://xmlns.com/foaf/0.1/">
 <foaf:name>Dan Brickley</foaf:name>
 <foaf:homepage rdf:resource="http://danbri.org/" />
 <foaf:openid rdf:resource="http://danbri.org/" />
 <foaf:img rdf:resource="/images/me.jpg" />
</foaf:Person>

 Figure 5: Original FOAF file at http://.../me.xml

 Converted, assuming no particular profiling or dictionary setup (and
 an ad-hoc table following Section 3.1 of [I-D.ietf-cbor-packed]),
 this could be:

51([[cri’http://danbri.org/’], [<<-3, "xmlns.com", ["foaf", "0.1"], null>>], [],
[
 [2, cri’http://www.iana.org/assignments/relation/carries-information-about’, cr
i’/me.xml#danbri’,
 [2, cri’http://www.w3.org/1999/02/22-rdf-syntax-ns#type’, 6(<<’Person’>>)],
 [2, 6(<<’name’>>), "Dan Brickley"],
 [2, 6(<<’homepage’>>), 6(0)],
 [2, 6(<<’openid’>>), 6(0)],
 [2, 6(<<’img’>>), cri’/images/me.jpg’]
]
]])

 Figure 6: Serialized FOAF file at http://.../me.coral

 The TBD:talks-about statement is introduced to bridge the gap between
 the basic and the necessarily structured information model. [TBD:
 Introduce that somewhere else more generally.]

 In this packing, an invalid CRI (with trailing null leaving room for
 a fragment identifier to be added through packing) is added into the
 prefixes list. It is not sure whether this particular trick will
 ever be permitted by any of the profilings, or whether this is better
 done with base URIs. The mechanism is used because right now it
 works with the specifications involved without the need for further
 text, and is likely to be replaced by better mechanisms in later
 revisions of this document.

Amsüss & Fossati Expires 5 September 2024 [Page 42]

Internet-Draft Constrained RESTful Application Language March 2024

C.2. CoRE Link Format

 Generic information in Web Links as described in [RFC8288] can not be
 converted to CoRAL in any practical way: Attributes are not managed,
 and it is not clear from the syntax whether an attribute is making a
 statement about the link or its target. (See Section 2.3.3.1 for an
 example).

 Applications that use links with the attribute semantics common in
 the CoRE ecosystem (typically used with [RFC6690] Link Format) can
 use this conversion. It defines terms for common properties used for
 discovering resources, and describes a way to compatibly extend the
 mapping.

 The same mechanism (but probably with a different mapping between
 names and attributes, and different rules about the necessity of
 packing entries) can be defined for any data model that builds on
 [RFC8288] semantics, e.g., the links sent in headers or payloads
 about [RFC7089] mementos, or applications building on
 [I-D.ietf-httpapi-linkset].

 In several points the mapping describes URIs to necessarily have an
 entry in the packing table; this refers to the profiling described
 further down. Parts of a Link Format document that would need an
 entry but do not have one can not be converted; these are ignored in
 the conversion unless the converter is configured to be strict and
 fail the complete conversion in that case.

 This mapping from Link Format to CoRAL is performed as follows: * For
 each relation in a link, a statement is created mapping the link
 context to the subject, the link target to the object and the
 relation to the predicate.

 If the relation is of ext-rel-type, it is used as a URI as is.
 Otherwise it is a registered value, prefixed with
 http://www.iana.org/assignments/relation/ and necessarily packed
 using table TBD. (This is equivalent to the RPP mechanism for
 attribute values).

 * Each target attribute is converted to one or more statements by
 the mechanism indicated for the attribute name in the following
 table. Statements produced from a link have the target as its
 subject, the attribute name without any trailing asterisk
 (prefixed with https://TBD/ [to be picked together with IANA as
 it’ll be a registry]) as its predicate, and the object(s)
 depending on the mechanism.

 Attributes are necessarily listed in this table.

Amsüss & Fossati Expires 5 September 2024 [Page 43]

Internet-Draft Constrained RESTful Application Language March 2024

 +=====+==========+=====================================+
 | TN | Name | Mechanism |
 +=====+==========+=====================================+
 | TBD | hreflang | [do we need that?] |
 +-----+----------+-------------------------------------+
 | TBD | media | [do we need that?] |
 +-----+----------+-------------------------------------+
 | 16 | title | string |
 +-----+----------+-------------------------------------+
 | TBD | type | [do we need that?] |
 +-----+----------+-------------------------------------+
 | 0 | rt | WSSP; RPP http://www.iana.org/TBDr/ |
 +-----+----------+-------------------------------------+
 | 1 | if | WSSP; RPP http://www.iana.org/TBDi/ |
 +-----+----------+-------------------------------------+
 | 2 | sz | int |
 +-----+----------+-------------------------------------+
 | 3 | ct | WSSP; int |
 +-----+----------+-------------------------------------+

 Table 5: Initial entries of the target attribute
 registry (TN = table number)

 Available mechanisms are:

 * SPSP (space split): Link format values are split at space
 characters (SP in the RFC6690 ABNF), and all values treated using
 another mechanism.

 * string: The attribute value is stored as a text string literal.
 If the Link Format attribute is language tagged (i.e. when the
 attribute name ends with an asterisk and the value is of ext-value
 shape), the literal is encapsulated in a CBOR language tag (38).

 * int: The target attribute is processed as an ASCII encoded number
 and expressed as an integer literal. A failing conversion is
 treated like an unknown registered value: It is ignored unless
 configured otherwise.

 * RPP (registered-prefix / packed): The input value (often the
 result of the SPSP mechanism) is parsed according to the relation-
 type ABNF production. If it is of ext-rel-type, it is expressed
 as that URI. If it is prefixed with the string indicated with the
 mechanism, and necessarily compressed through table TBD.

 All currently registered link attributes are used in the CoRE
 ecosystem as indicating a property of the target that is independent
 of the link being followed. If this conversion is to be extended to

Amsüss & Fossati Expires 5 September 2024 [Page 44]

Internet-Draft Constrained RESTful Application Language March 2024

 cover attributes that pertain to the full link being followed
 (typically along with one or more link relations), the relevant
 relations are not expressed as a single statement, but as a form,
 i.e. as two statements linking the context to a blank node and the
 blank node to the target; the attributes are attached to the blank
 node. The precise mechanism out of scope for this document, and left
 to those who first register such an attribute.

 Some structure can be carried over from Link Format to the structured
 model: The sequences of links gets reused, and the set and sequence
 of attributes in a particular occurrence of a link get applied to the
 statement produced from the link (or all the statements, if the link
 has multiple link relations). Statements whose subject is not the
 document itself are attached to the retrieval context using the
 necessarily packed http://www.iana.org/assignments/relation/carries-
 information-about property. Statements about URLs mentioned
 elsewhere in the document can be expressed there instead.

 Link relations of the reg-name form, link attributes, and attribute
 values from the RPP mechanism MUST be serialized using packed CBOR as
 initialized in table TBD. No other packing is used. A consumer MAY
 ignore any items compressed through the dictionary for which it does
 not know the expanded version: These necessarily represent statements
 that involve terms the consumer does not understand.

 [As an alternative, packing attributes together with their URIs is
 considered: Rather than [2, 6(/ attr:rt /), 6(/ rt:core.rd /)] we
 could have 6(rt-core) right away; unregistered values would stay [2,
 6(/ attr:rt /), value] or maybe 254([value]) using prefix packing.]

Appendix D. Change Log

 This section is to be removed before publishing as an RFC.

 Changes from -05 to -06:

 * Unmodified resubmission. (Recent work is going on in
 [I-D.ietf-core-href] and [I-D.ietf-cbor-packed], providing
 building blocks for CoRAL).

 Changes from -04 to -05:

 * Literals can no longer have properties. The only use case was
 annotating languages and directions, and that can be done in CBOR.

 * Added section about open and close world modelling.

Amsüss & Fossati Expires 5 September 2024 [Page 45]

Internet-Draft Constrained RESTful Application Language March 2024

 * Information model merged with the previous data model and
 interaction section.

 Changes from -03 to -04:

 * Formalize information model, as basic and structured model.

 * Remove textual representation, using CBOR diagnostig notation
 instead.

 * Use Packed CBOR instead of custom dictionaries.

 * Give explicit conversions from Link Format and with RDF.

 * Remove references to IRIs (outside RDF) as CRIs are closer to
 URIs.

 * Remove requirement for deterministic encoding.

 * Many editorial changes.

 * Update references.

 * Change of authorship.

 Changes from -02 to -03:

 * Changed the binary format to express relation types, operation
 types and form field types using [I-D.ietf-core-href] (#2).

 * Clarified the current context and current base for nested elements
 and form fields (#53).

 * Minor editorial improvements (#27).

 Changes from -01 to -02:

 * Added nested elements to form fields.

 * Replaced the special construct for embedded representations with
 links.

 * Changed the textual format to allow simple/qualified names
 wherever IRI references are allowed.

 * Introduced predefined names in the textual format (#39).

 * Minor editorial improvements and bug fixes (#16 #28 #31 #37 #39).

Amsüss & Fossati Expires 5 September 2024 [Page 46]

Internet-Draft Constrained RESTful Application Language March 2024

 Changes from -00 to -01:

 * Added a section on the semantics of CoRAL documents in responses.

 * Minor editorial improvements.

Acknowledgements

 The concept and original version of CoRAL (as well as CRIs) was
 developed by Klaus Hartke. It was heavily inspired by Mike Kelly’s
 JSON Hypertext Application Language [HAL].

 The recommendations for minting URIs have been adopted from RDF 1.1
 Concepts and Abstract Syntax [W3C.REC-rdf11-concepts-20140225] to
 ease the interoperability between RDF predicates and link relation
 types.

 Thanks to Carsten Bormann, Jaime Jiménez, Jim Schaad, Sebastian
 Käbisch, Ari Keränen, Michael Koster, Matthias Kovatsch and Niklas
 Widell for helpful comments and discussions that have shaped the
 document.

Authors’ Addresses

 Christian Amsüss
 Email: christian@amsuess.com

 Thomas Fossati
 ARM
 Email: thomas.fossati@arm.com

Amsüss & Fossati Expires 5 September 2024 [Page 47]

