
Network Working Group J. Schaad
Internet-Draft August Cellars
Intended status: Informational 22 May 2020
Expires: 23 November 2020

 CBOR Object Signing and Encryption (COSE): Additional Algorithms
 draft-schaad-cose-more-algs-01

Abstract

 The CBOR Object Signing and Encryption (COSE) syntax
 [I-D.ietf-cose-rfc8152bis-struct] allows for adding additional
 algorithms to the registries. This document adds one additional key
 wrap algorithm to the registry using the AES Wrap with Padding
 Algorithm [RFC5649]. This document adds Keccak Message
 Authentication Code (KMAC) algorithms as well as using KMAC as a Key
 Derivation Function (KDF).

Contributing to this document

 This note is to be removed before publishing as an RFC.

 The source for this draft is being maintained in GitHub. Suggested
 changes should be submitted as pull requests at https://github.com/
 cose-wg/X509 Editorial changes can be managed in GitHub, but any
 substantial issues need to be discussed on the COSE mailing list.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 23 November 2020.

Schaad Expires 23 November 2020 [Page 1]

Internet-Draft COSE Algorithms May 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 1.1. Requirements Terminology 3
 1.2. Open Issues . 3
 2. Signature Algorithms . 3
 3. Message Authentication Code (MAC) Algorithms 3
 3.1. Keccak Message Authentication Code (KMAC) 4
 4. AES Key Wrap with Padding 5
 4.1. Security Considerations for AES-KW with Padding 6
 5. Key Derivation Functions (KDFs) 6
 5.1. KMAC KDF . 6
 6. Content Key Distribution Methods 8
 6.1. Direct Key with KDF 8
 6.1.1. Security Considerations 9
 6.2. Direct ECDH . 9
 6.3. ECDH with Key Wrap 10
 7. Security Considerations 12
 8. IANA Considerations . 12
 8.1. Changes to the Algorithm Table 12
 9. References . 12
 9.1. Normative References 12
 Author’s Address . 13

1. Introduction

 The CBOR Object Signing and Encryption (COSE) syntax
 [I-D.ietf-cose-rfc8152bis-struct] is defined to have an object based
 set of security primitives using CBOR [I-D.ietf-cbor-7049bis] for use
 in constrained environments. COSE has algorithm agility so that
 documents like this one can register algorithms which are needed.

 In this document we add:

Schaad Expires 23 November 2020 [Page 2]

Internet-Draft COSE Algorithms May 2020

 * The AES Wrap with Padding algorithm.

 * Keccak Message Authentication Code (KMAC) algorithms.

 * KMAC as a Key Derivation Function (KDF) for direct and key
 agreement algorithms.

1.1. Requirements Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

1.2. Open Issues

 This section is to be removed before publishing as an RFC.

 * Should 192-bit AES Key Wrap be omitted or just given a large
 identifier? (John)

 * Add the cSHAKE algorithms to the list? (Bob)

 * RESOLVED: A desire has been expressed to all for the use of AES
 Key Wrap with Padding as a content encryption algorithm. This is
 not compatible with the requirement that all content encryption
 algorithms "support authentication of both the content and
 additional data." AES Key Wrap is an AE not an AEAD algorithm.
 (Jim) Response: Russ said it was ok just to be a key wrap
 algorithm.

2. Signature Algorithms

 This section is to be removed before publishing as an RFC.

 This document defines no new signature algorithms.

3. Message Authentication Code (MAC) Algorithms

Schaad Expires 23 November 2020 [Page 3]

Internet-Draft COSE Algorithms May 2020

3.1. Keccak Message Authentication Code (KMAC)

 As part of the definition of the SHA-3 algorithms, NIST also defined
 a number of algorithms that are based on SHA-3 [NIST-800-185]. The
 Keccak Message Authentication Code (KMAC) is defined in that
 document. KMAC has a big performance advantage when compared to
 Hash-Based Message Authentication Code (HMAC) [RFC2104] [RFC4231] as
 it was designed to deal with the length extension attacks that forced
 the two pass structure of HMAC.

 KMAC is parameterized with four inputs:

 * K - the key used for authentication

 * X - the byte string to be authenticated

 * L - the size of the authentication value in bits. This MUST be at
 least 64 and SHOULD be at least 128.

 * S - customization string which shall be a zero length byte string.

 The algorithm identifier does not encode the length of the
 authentication tag, unlike the MAC algorithms defined in
 [I-D.ietf-cose-rfc8152bis-algs]. This is because shortened tags for
 those algorithms are generated by truncating a longer output.
 However, KMAC takes the resultant output length as one of the
 parameters and will generate different outputs depending on the
 length. The length of the MAC code is therefore chosen by the
 sender, and the length is inferred from the actual tag by the
 validator. If an attacker attempts to gain an advantage by
 shortening the tag, KMAC is not going to generate the correct tag.

 +----------+-------+------------------------+-------------+
 | Name | Value | Description | Recommended |
 +==========+=======+========================+=============+
 | KMAC 128 | TBD4 | KMAC w/ SHA-3 128-bits | Yes |
 +----------+-------+------------------------+-------------+
 | KMAC 256 | TBD5 | KMAC w/ SHA-3 256-bits | Yes |
 +----------+-------+------------------------+-------------+

 Table 1

 When using a COSE key for this algorithm, the following checks are
 made:

 * The ’kty’ field MUST be present, and it MUST be ’Symmetric’.

Schaad Expires 23 November 2020 [Page 4]

Internet-Draft COSE Algorithms May 2020

 * If the ’alg’ field is present, it MUST match the KMAC algorithm
 being used.

 * If the ’key_ops’ field is present, it MUST include ’MAC create’
 when creating an KMAC authentication tag.

 * If the ’key_ops’ field is present, it MUST include ’MAC verify’
 when verifying an KMAC authentication tag.

 Implementations creating and validating MAC values MUST validate that
 the key type, key length, and algorithm are correct and appropriate
 for the entities involved.

4. AES Key Wrap with Padding

 The AES Key Wrap with Padding is defined in [RFC5649]. This
 algorithm uses an AES key to wrap a value that is a multiple of 8
 bits. As such, it can be used to wrap not only the key sizes for the
 content encryption algorithms, but additionally it can be used to
 encrypt off size keys that can be used with the keyed hash functions
 or key derivation functions. The algorithm uses a single fixed
 parameter, the initial value. This value is fixed in section 3 of
 [RFC5649], this is a different value from that used for the AES Key
 Wrap algorithm of [RFC3394]. There are no public parameters that
 very on a per-invocation bases. This algorithm does not support
 additional data and thus the protected header field MUST be empty.

 +------------+-------+------+------------------------+-------------+
 | Name | Value | Key | Description | Recommended |
 | | | Size | | |
 +============+=======+======+========================+=============+
 | A128KW-Pad | TBD1 | 128 | AES Key Wrap w/padding | Yes |
 | | | | and a 128-bit key | |
 +------------+-------+------+------------------------+-------------+
 | A192KW-Pad | TBD2 | 192 | AES Key Wrap w/padding | No |
 | | | | and a 192-bit key | |
 +------------+-------+------+------------------------+-------------+
 | A256KW-Pad | TBD3 | 256 | AES Key Wrap w/padding | Yes |
 | | | | and a 256-bit key | |
 +------------+-------+------+------------------------+-------------+

 Table 2: AES Key Wrap Algorithm Values

 When using a COSE key for this algorithm, the following checks are
 made:

 * The ’kty’ field MUST be present, and it MUST be ’Symmetric’.

Schaad Expires 23 November 2020 [Page 5]

Internet-Draft COSE Algorithms May 2020

 * If the ’alg’ field is present, it MUST match the AES Key Wrap
 algorithm being used.

 * If the ’key_ops’ field is present, it MUST include ’encrypt’ or
 ’wrap key’ when encrypting.

 * If the ’key_ops’ field is present, it MUST include ’decrypt’ or
 ’unwrap key’ when decrypting.

4.1. Security Considerations for AES-KW with Padding

 The shared secret needs to have some method to be regularly updated
 over time. The shared secret is the basis of trust.

5. Key Derivation Functions (KDFs)

5.1. KMAC KDF

 KMAC can additionally be used as a key derivation function
 [NIST-800-56C]. KMAC has a big advantage over the HKDF function,
 defined in [HKDF], as it executes the hashing function once as
 opposed to either two or four times for HKDF w/ HMAC SHA-256. This
 advantage may be offset by having SHA-256 in hardware and KMAC in
 software, so that should be one consideration in deciding which one
 to use.

 The KMAC-KDF algorithm takes these inputs:

 * secret -- a shared value that is secret. Secrets may be either
 previously shared or derived from operations like a Diffie-Hellman
 (DH) key agreement.

 * salt -- an optional value that is used to change the generation
 process. The salt value can be either public or private. If the
 salt is public and carried in the message, then the ’salt’
 algorithm header parameter defined in Table 9 of
 [I-D.ietf-cose-rfc8152bis-algs] is used. While [HKDF] suggests
 that the length of the salt be the same as the length of the
 underlying hash value, any positive salt length will improve the
 security as different key values will be generated. This
 parameter is protected by being included in the key computation
 and does not need to be separately authenticated. The salt value
 does not need to be unique for every message sent.

 * length -- the number of bytes of output that need to be generated.

Schaad Expires 23 November 2020 [Page 6]

Internet-Draft COSE Algorithms May 2020

 * context information -- Information that describes the context in
 which the resulting value will be used. Making this information
 specific to the context in which the material is going to be used
 ensures that the resulting material will always be tied to that
 usage. The context structure defined in Section 5.2 of
 [I-D.ietf-cose-rfc8152bis-algs] is used by the KDFs in this
 document.

 Full details of how the key derivation works can be found in
 Section 4 of [NIST-800-56C]. A quick summary of the details is
 provided here for simplicity. The KMAC function call is:

 Result = KMAC#(salt, x, outputBits, "KDF")

 where:

 * salt is the same parameter as above

 * x is built as _counter || Z || FixedInfo_. Where counter is a
 4-byte unsigned integer of 0, Z is the secret, and FixedInfo is
 the context information.

 * outputBits is length * 8

 One algorithm parameter is defined for the KMAC-KDF function.

 +------+-------+------+------------------------------+-------------+
 | Name | Label | Type | Algorithm | Description |
 +======+=======+======+==============================+=============+
salt	-20	bstr	direct+KMAC-128-KDF,	Random salt
			direct+KMAC-256-KDF, ECDH-	
			ES+KMAC-128-KDF, ECDH-	
			ES+KMAC-256-KDF, ECDH-	
			SS+KMAC-128-KDF, ECDH-	
			SS+KMAC-256-KDF ECDH-	
			ES+KMAC-128-KDF+A128KW,	
			ECDH-ES+KMAC-256-KDF+A128KW,	
			ECDH-SS+KMAC-128-KDF+A128KW,	
			ECDH-SS+KMAC-256-KDF+A128KW	
			ECDH-ES+KMAC-256-KDF+A256KW,	
			ECDH-ES+KMAC-256-KDF+A256KW,	
			ECDH-SS+KMAC-256-KDF+A256KW,	
			ECDH-SS+KMAC-256-KDF+A256KW	
 +------+-------+------+------------------------------+-------------+

 Table 3: KMAC-KDF Algorithm Parameters

Schaad Expires 23 November 2020 [Page 7]

Internet-Draft COSE Algorithms May 2020

6. Content Key Distribution Methods

6.1. Direct Key with KDF

 These recipient algorithms take a common shared secret between the
 two parties and applies the KMAC-KDF function (Section 5.1), using
 the context structure defined in Section 5.2 of
 [I-D.ietf-cose-rfc8152bis-algs] to transform the shared secret into
 the CEK. The ’protected’ field can be of non-zero length. Either
 the ’salt’ parameter of KMAC-KDF or the ’PartyU nonce’ parameter of
 the context structure MUST be present. The salt/nonce parameter can
 be generated either randomly or deterministically. The requirement
 is that it be a unique value for the shared secret in question.

 If the salt/nonce value is generated randomly, then it is suggested
 that the length of the random value be the same length as the KMAC-
 KDF. While there is no way to guarantee that it will be unique,
 there is a high probability that it will be unique. If the salt/
 nonce value is generated deterministically, it can be guaranteed to
 be unique, and thus there is no length requirement.

 A new IV must be used for each message if the same key is used. The
 IV can be modified in a predictable manner, a random manner, or an
 unpredictable manner (i.e., encrypting a counter).

 The IV used for a key can also be generated from the same KMAC-KDF
 functionality as the key is generated. If KMAC-KDF is used for
 generating the IV, the algorithm identifier is set to "IV-
 GENERATION". Doing this requires that the context be modified for
 every IV generated to ensure that it is unique.

 When these algorithms are used, the key type MUST be ’symmetric’.

 The set of algorithms defined in this document can be found in
 Table 4.

 +-----------------+-------+----------+---------------------------+
 | Name | Value | KDF | Description |
 +=================+=======+==========+===========================+
 | direct+KMAC-128 | TBD6 | KMAC-128 | Shared secret w/ KMAC-128 |
 +-----------------+-------+----------+---------------------------+
 | direct+KMAC-256 | TBD7 | KMAC-256 | Shared secret w/ KMAC-128 |
 +-----------------+-------+----------+---------------------------+

 Table 4: Direct Key with KDF

 When using a COSE key for this algorithm, the following checks are
 made:

Schaad Expires 23 November 2020 [Page 8]

Internet-Draft COSE Algorithms May 2020

 * The ’kty’ field MUST be present, and it MUST be ’Symmetric’.

 * If the ’alg’ field is present, it MUST match the algorithm being
 used.

 * If the ’key_ops’ field is present, it MUST include ’deriveKey’ or
 ’deriveBits’.

6.1.1. Security Considerations

 The shared secret needs to have some method to be regularly updated
 over time. The shared secret forms the basis of trust. Although not
 used directly, it should still be subject to scheduled rotation.

 While these methods do not provide for perfect forward secrecy, as
 the same shared secret is used for all of the keys generated, if the
 key for any single message is discovered, only the message (or series
 of messages) using that derived key are compromised. A new key
 derivation step will generate a new key that requires the same amount
 of work to get the key.

6.2. Direct ECDH

 This document adds to the set of Direct ECDH algorithms which were
 defined in Section 6.3 of [I-D.ietf-cose-rfc8152bis-algs]. This is
 done by adding a changing the KDF used to derive the shared secret.

 +----------+-------+----------+------------+------+-----------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +==========+=======+==========+============+======+=================+
ECDH-ES	TBD8	KMAC-128	yes	none	ECDH ES w/
+					KMAC -
KMAC-128					generate key
					directly
+----------+-------+----------+------------+------+-----------------+					
ECDH-ES	TBD9	KMAC-256	yes	none	ECDH ES w/
+					KMAC -
KMAC-256					generate key
					directly
 +----------+-------+----------+------------+------+-----------------+

 Table 5: ECDH Algorithm Values

 Both of these algorithms use the same set of the ECDH Algorithm
 Parameters as their HKDF counterparts.

Schaad Expires 23 November 2020 [Page 9]

Internet-Draft COSE Algorithms May 2020

 This document defines these algorithms to be used with the curves
 P-256, P-384, P-521, X25519, and X448. Implementations MUST verify
 that the key type and curve are correct. Different curves are
 restricted to different key types. Implementations MUST verify that
 the curve and algorithm are appropriate for the entities involved.

 When using a COSE key for this algorithm, the following checks are
 made:

 * The ’kty’ field MUST be present, and it MUST be ’EC2’ or ’OKP’.

 * If the ’alg’ field is present, it MUST match the key agreement
 algorithm being used.

 * If the ’key_ops’ field is present, it MUST include ’derive key’ or
 ’derive bits’ for the private key.

 * If the ’key_ops’ field is present, it MUST be empty for the public
 key.

6.3. ECDH with Key Wrap

 This document adds to the set of Direct ECDH algorithms which were
 defined in Section 6.4 of [I-D.ietf-cose-rfc8152bis-algs]. This is
 done by adding a changing the KDF used to derive the shared secret.

Schaad Expires 23 November 2020 [Page 10]

Internet-Draft COSE Algorithms May 2020

 +----------+-------+----------+------------+--------+-------------+
 | Name | Value | KDF | Ephemeral- | Key | Description |
 | | | | Static | Wrap | |
 +==========+=======+==========+============+========+=============+
 | ECDH-ES | TBD10 | KMAC-128 | yes | A128KW | ECDH ES w/ |
 | + | | | | | KMAC-128 |
 | KMAC-128 | | | | | and AES Key |
 | + A128KW | | | | | Wrap w/ |
 | | | | | | 128-bit key |
 +----------+-------+----------+------------+--------+-------------+
 | ECDH-ES | TBD11 | KMAC-256 | yes | A256KW | ECDH ES w/ |
 | + | | | | | KMAC-256 |
 | KMAC-256 | | | | | and AES Key |
 | + A256KW | | | | | Wrap w/ |
 | | | | | | 256-bit key |
 +----------+-------+----------+------------+--------+-------------+
 | ECDH-SS | TBD12 | KMAC-128 | yes | A128KW | ECDH SS w/ |
 | + | | | | | KMAC-128 |
 | KMAC-128 | | | | | and AES Key |
 | + A128KW | | | | | Wrap w/ |
 | | | | | | 128-bit key |
 +----------+-------+----------+------------+--------+-------------+
 | ECDH-SS | TBD13 | KMAC-256 | yes | A256KW | ECDH SS w/ |
 | + | | | | | KMAC-256 |
 | KMAC-256 | | | | | and AES Key |
 | + A256KW | | | | | Wrap w/ |
 | | | | | | 256-bit key |
 +----------+-------+----------+------------+--------+-------------+

 Table 6: ECDH Algorithm Values with Key Wrap

 When using a COSE key for this algorithm, the following checks are
 made:

 * The ’kty’ field MUST be present, and it MUST be ’EC2’ or ’OKP’.

 * If the ’alg’ field is present, it MUST match the key agreement
 algorithm being used.

 * If the ’key_ops’ field is present, it MUST include ’derive key’ or
 ’derive bits’ for the private key.

 * If the ’key_ops’ field is present, it MUST be empty for the public
 key.

Schaad Expires 23 November 2020 [Page 11]

Internet-Draft COSE Algorithms May 2020

7. Security Considerations

 Decide on this - TBD

8. IANA Considerations

8.1. Changes to the Algorithm Table

 IANA is requested to add new items to the "COSE Algorithms" registry.
 The content to be added can be found in Table 2. For all items to be
 added, the Reference column should be set to this document.

9. References

9.1. Normative References

 [I-D.ietf-cose-rfc8152bis-struct]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Structures and Process", Work in Progress, Internet-Draft,
 draft-ietf-cose-rfc8152bis-struct-08, 9 March 2020,
 <https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
 struct-08>.

 [I-D.ietf-cose-rfc8152bis-algs]
 Schaad, J., "CBOR Object Signing and Encryption (COSE):
 Initial Algorithms", Work in Progress, Internet-Draft,
 draft-ietf-cose-rfc8152bis-algs-07, 9 March 2020,
 <https://tools.ietf.org/html/draft-ietf-cose-rfc8152bis-
 algs-07>.

 [I-D.ietf-cbor-7049bis]
 Bormann, C. and P. Hoffman, "Concise Binary Object
 Representation (CBOR)", Work in Progress, Internet-Draft,
 draft-ietf-cbor-7049bis-13, 8 March 2020,
 <https://tools.ietf.org/html/draft-ietf-cbor-7049bis-13>.

 [RFC2104] Krawczyk, H., Bellare, M., and R. Canetti, "HMAC: Keyed-
 Hashing for Message Authentication", RFC 2104,
 DOI 10.17487/RFC2104, February 1997,
 <https://www.rfc-editor.org/info/rfc2104>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Schaad Expires 23 November 2020 [Page 12]

Internet-Draft COSE Algorithms May 2020

 [RFC4231] Nystrom, M., "Identifiers and Test Vectors for HMAC-SHA-
 224, HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512",
 RFC 4231, DOI 10.17487/RFC4231, December 2005,
 <https://www.rfc-editor.org/info/rfc4231>.

 [HKDF] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand
 Key Derivation Function (HKDF)", RFC 5869,
 DOI 10.17487/RFC5869, May 2010,
 <https://www.rfc-editor.org/info/rfc5869>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC5649] Housley, R. and M. Dworkin, "Advanced Encryption Standard
 (AES) Key Wrap with Padding Algorithm", RFC 5649,
 DOI 10.17487/RFC5649, September 2009,
 <https://www.rfc-editor.org/info/rfc5649>.

 [RFC3394] Schaad, J. and R. Housley, "Advanced Encryption Standard
 (AES) Key Wrap Algorithm", RFC 3394, DOI 10.17487/RFC3394,
 September 2002, <https://www.rfc-editor.org/info/rfc3394>.

 [NIST-800-185]
 Kelsey, J., Change, S., and R. Perlner, "SHA-3 Derived
 Functions: cSHAKE, KMAC, TupleHash, ParallelHash",
 December 2016,
 <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
 NIST.SP.800-185.pdf>.

 [NIST-800-56C]
 Barker, E., Chen, L., and R. Davis, "Recommendation for
 Key-Derivation Methods in Key-Establishment Schemes"",
 March 2020,
 <https://nvlpubs.nist.gov/nistpubs/SpecialPublications/
 NIST.SP.800-56Cr2-draft.pdf>.

Author’s Address

 Jim Schaad
 August Cellars

 Email: ietf@augustcellars.com

Schaad Expires 23 November 2020 [Page 13]

