
TSVWG M. Welzl
Internet-Draft University of Oslo
Intended status: Standards Track C. Bormann, Ed.
Expires: 14 January 2021 Universität Bremen TZI
 13 July 2020

 LOOPS Generic Information Set
 draft-welzl-loops-gen-info-04

Abstract

 LOOPS (Local Optimizations on Path Segments) aims to provide local
 (not end-to-end but in-network) recovery of lost packets to achieve
 better data delivery in the presence of losses.
 [I-D.li-tsvwg-loops-problem-opportunities] provides an overview over
 the problems and optimization opportunities that LOOPS could address.

 The present document is a strawman for the set of information that
 would be interchanged in a LOOPS protocol, without already defining a
 specific data packet format.

 The generic information set needs to be mapped to a specific
 encapsulation protocol to actually run the LOOPS optimizations. A
 companion document contains a sketch of a binding to the tunnel
 encapsulation protocol Geneve [I-D.ietf-nvo3-geneve].

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 January 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

Welzl & Bormann Expires 14 January 2021 [Page 1]

Internet-Draft LOOPS July 2020

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 1.1. Terminology . 5
 2. Challenges . 6
 2.1. No Access to End-to-End Transport Information 6
 2.2. Path Asymmetry . 6
 2.3. Reordering vs. Spurious Retransmission 6
 2.4. Informing the End-to-End Transport 7
 3. Simplifying assumptions 8
 4. LOOPS Architecture . 9
 5. LOOPS Generic Information Set 10
 5.1. Setup Information . 10
 5.2. Forward Information 10
 5.3. Reverse Information 11
 6. LOOPS General Operation 12
 6.1. Initial Packet Sequence Number 12
 6.1.1. Minimizing collisions 12
 6.1.2. Optional Initial PSN procedure 12
 6.2. Acknowledgement Generation 13
 6.3. Measurement . 14
 6.3.1. Ingress-relative timestamps 14
 6.3.2. ACK generation 15
 6.4. Loss detection and Recovery 15
 6.4.1. Local Retransmission 15
 6.4.2. FEC . 16
 6.5. Discussion . 16
 7. Sketches of Bindings to Tunnel Protocols 16
 7.1. Embedding LOOPS in Geneve 17
 8. IANA Considerations . 17
 9. Security Considerations 17
 9.1. Threat model . 17
 9.2. Discussion . 18
 10. References . 18
 10.1. Normative References 18
 10.2. Informative References 19
 Appendix A. Protocol used in Prototype Implementation 21
 A.1. Block Code FEC . 22
 Appendix B. Transparent mode 22

Welzl & Bormann Expires 14 January 2021 [Page 2]

Internet-Draft LOOPS July 2020

 B.1. Packet identification 24
 B.2. Generic information and protocol operation 25
 B.3. A hybrid mode . 25
 Acknowledgements . 27
 Authors’ Addresses . 27

1. Introduction

 Today’s networks exhibit a wide variety of data rates and, relative
 to those, processing power and memory capacities of nodes acting as
 routers. For instance, networks that employ tunneling to build
 overlay networks may position powerful virtual router nodes in the
 network to act as tunnel endpoints. The capabilities available in
 the more powerful cases provide new opportunities for optimizations.

 LOOPS (Local Optimizations on Path Segments) aims to provide local
 (not end-to-end but in-network) recovery of lost packets to achieve
 better data delivery. [I-D.li-tsvwg-loops-problem-opportunities]
 provides an overview over the problems and optimization opportunities
 that LOOPS could address. One simplifying assumption (Section 3) in
 the present document is that LOOPS segments operate independently
 from each other, each as a pair of a LOOPS Ingress and a LOOPS Egress
 node.

 The present document is a strawman for the set of information that
 would be interchanged in a LOOPS protocol between these nodes,
 without already defining a specific data packet format. The main
 body of the document defines a mode of the LOOPS protocol that is
 based on traditional tunneling, the "tunnel mode". Appendix B is an
 even rougher strawman of a radically different, alternative mode that
 we call "transparent mode", as well as a slightly more conventional
 "hybrid mode" (Appendix B.3). These different modes may be
 applicable to different usage scenarios and will be developed in
 parallel, with a view of ultimately standardizing one or more of
 them.

 For tunnel mode, the generic information set needs to be mapped to a
 specific encapsulation protocol to actually run the LOOPS
 optimizations. LOOPS is not tied to any specific overlay protocol,
 but is meant to run embedded into a variety of tunnel protocols.
 LOOPS information is added as part of a tunnel protocol header at the
 LOOPS ingress as shown in Figure 1. A companion document
 [I-D.bormann-loops-geneve-binding] contains a sketch of a binding to
 the tunnel encapsulation protocol Geneve [I-D.ietf-nvo3-geneve].

Welzl & Bormann Expires 14 January 2021 [Page 3]

Internet-Draft LOOPS July 2020

 +------------------------------------+
 | Outer header |
 +------------------------------------+
 / | Tunnel Base Header |
 / +------------------------------------+\
 Tunnel | +-------------------------+ | \
 Header ˜ | LOOPS Information | ˜ Tunnel Header
 \ | +-------------------------+ | Extensions
 \ +------------------------------------+ /
 | Data packet |
 +------------------------------------+

 Figure 1: Packet in Tunnel with LOOPS Information

 Figure 2 is extracted from the LOOPS problems and opportunities
 document [I-D.li-tsvwg-loops-problem-opportunities]. It illustrates
 the basic architecture and terms of the applicable scenario of LOOPS.
 Not all of the concepts introduced in the problems and opportunities
 document are actually used in the current strawman specification;
 Section 3 lays out some simplifying assumptions that the present
 proposal makes.

 ON=overlay node
 UN=underlay node

 +---------+ +---------+
 | App | <---------------- end-to-end ---------------> | App |
 +---------+ +---------+
 |Transport| <---------------- end-to-end ---------------> |Transport|
 +---------+ +---------+
	+--+ path +--+ path segment2 +--+															
			<-seg1->		<-------------->											
Network	+--+	ON	+--+	ON	+--+ +----+	ON		Network								
	--	UN	--		--	UN	--		--	UN	---	UN	--		--	
 +---------+ +--+ +--+ +--+ +--+ +--+ +----+ +--+ +---------+
 End Host End Host
 <--------------------------------->
 LOOPS domain: path segments enabling
 optimization for local in-network recovery

 Figure 2: LOOPS Usage Scenario

Welzl & Bormann Expires 14 January 2021 [Page 4]

Internet-Draft LOOPS July 2020

1.1. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in
 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

 This document makes use of the terminology defined in
 [I-D.li-tsvwg-loops-problem-opportunities]. This section defines
 additional terminology used by this document.

 Data packets: The payload packets that enter and exit a LOOPS
 segment.

 LOOPS Segment: A part of an end-to-end path covered by a single
 instance of the LOOPS protocol, the sub-path between the LOOPS
 Ingress and the LOOPS Egress. Several LOOPS segments may be
 encountered on an end-to-end path, with or without intervening
 routers.

 LOOPS Ingress: The node that forwards data packets and forward
 information into the LOOPS segment, potentially performing
 retransmission and forward error correction based on
 acknowledgements and measurements received from the LOOPS Egress.

 LOOPS Egress: The node that receives the data packets and forward
 information from the LOOPS ingress, sends acknowledgements and
 measurements back to the LOOPS ingress (reverse information),
 potentially recovers data packets from forward error correction
 information received.

 LOOPS Nodes: Collective term for LOOPS Ingress and LOOPS Egress in a
 LOOPS Segment.

 Forward Information: Information that is added to the stream of data
 packets in the forward direction by the LOOPS Ingress.

 Reverse Information: Information that flows in the reverse
 direction, from the LOOPS Egress back to the LOOPS Ingress.

 Setup Information: Information that is not transferred as part of
 the Forward or Reverse Information, but is part of the setup of
 the LOOPS Nodes.

 PSN: Packet Sequence Number, a sequence number identifying a data
 packet between the LOOPS Ingress and Egress.

Welzl & Bormann Expires 14 January 2021 [Page 5]

Internet-Draft LOOPS July 2020

 Sender: Original sender of a packet on an end-to-end path that
 includes one or more LOOPS segment(s).

 Receiver: Ultimate receiver of a packet on an end-to-end path that
 includes one or more LOOPS segment(s).

2. Challenges

 LOOPS has to perform well in the presence of some challenges, which
 are discussed in this section.

2.1. No Access to End-to-End Transport Information

 LOOPS is defined to be independent of the content of the packets
 being forwarded: there is no dependency on transport-layer or higher
 information. The intention is to keep LOOPS useful with a traffic
 mix that may contain encrypted transport protocols such as QUIC as
 well as encrypted VPN traffic.

2.2. Path Asymmetry

 A LOOPS segment is defined as a unidirectional forwarding path. The
 tunnel might be shared with a LOOPS segment in the inverse direction;
 this then allows to piggyback Reverse Information on encapsulated
 packets on that segment. But there is no guarantee that the inverse
 direction of any end-to-end-path crosses that segment, so the LOOPS
 optimizations have to be useful on their own in each direction.

2.3. Reordering vs. Spurious Retransmission

 The end-to-end transport layer protocol may have its own
 retransmission mechanism to recover lost packets. When LOOPS
 recovers a loss, ideally this local recovery would replace the
 triggering of a retransmission at the end-to-end sender.

 Whether this is possible depends on the specific end-to-end mechanism
 used for triggering retransmission. When end-to-end retransmission
 is triggered by receiving a sequence of duplicate acknowledgements
 (DUPACKs), and with more than a few packets in flight, the recovered
 packet is likely to be too late to fill the hole in the sequence
 number space that triggers the DUPACK detection.

 (Given a reasonable setting of parameters, the local retransmission
 will still arrive earlier than the end-to-end retransmission and will
 possibly unblock application processing earlier; with spurious
 retransmission detection, there also will be little long-term effect
 on the send rate.)

Welzl & Bormann Expires 14 January 2021 [Page 6]

Internet-Draft LOOPS July 2020

 While LOOPS makes no requirements on end-to-end protocols, it is
 worth noting that the waste of bandwidth caused by a DUPACK-based
 end-to-end retransmission can be avoided when the end-to-end loss
 detection is based on time instead of sequence numbers, e.g., with
 RACK [I-D.ietf-tcpm-rack]. This requires a limit on the additional
 latency that LOOPS will incur in its attempt to recover the loss
 locally. In the present version of this document, opportunity to set
 such a limit is provided in the Setup Information. The limit can be
 used to compute a deadline for retransmission, but also can be used
 to choose FEC parameters that keep extra latency low.

2.4. Informing the End-to-End Transport

 Congestion control at the end-to-end sender is used to adapt its
 sending rate to the network congestion status. In typical TCP
 senders, packet loss implies congestion and leads to a reduction in
 sending rate. With LOOPS operating, packet loss can be masked from
 the sender as the loss may have been locally recovered. In this
 case, rate reduction may not be invoked at the sender. This is a
 desirable performance improvement if the loss was a random loss, but
 it is hard to ascertain that.

 If LOOPS successfully conceals congestion losses from the end-to-end
 transport protocol, that might increase the rate to a level that
 congests the LOOPS segment, or that causes excessive queueing at the
 LOOPS ingress. What LOOPS should be able to achieve is to let the
 end host sender invoke the rate reduction mechanism when there is a
 congestion loss no matter if the lost packet was recovered locally.

 As with any tunneling protocol, information about congestion events
 inside the tunnel needs to be exported to the end-to-end path the
 tunnel is part of. See e.g., [RFC6040] for a discussion of how to do
 this in the presence of ECN. A more recent draft,
 [I-D.ietf-tsvwg-tunnel-congestion-feedback], proposes to activate ECN
 for the tunnel regardless of whether the end-to-end protocol signals
 the use of an ECN-capable transport (ECT), which requires more
 complicated action at the tunnel egress.

 A sender that interprets reordering as a signal of packet loss
 (DUPACKs) initiates a retransmission and reduces the sending rate.
 When spurious retransmission detection (e.g., via F-RTO [RFC5862] or
 DSACK [RFC3708]) is enabled by the TCP sender, it will often be able
 undo the unnecessary window reduction shortly afterwards. As LOOPS
 recovers lost packets locally, in most cases the end host sender will
 eventually find out its reordering-based retransmission (if any) is
 spurious. This is an appropriate performance improvement if the loss
 was a random loss. For congestion losses, a congestion event needs
 to be signaled to the end-to-end transport.

Welzl & Bormann Expires 14 January 2021 [Page 7]

Internet-Draft LOOPS July 2020

 The present version of LOOPS requires the end-to-end transport to be
 ECN-capable (which is visible at the IP level). Congestion loss
 events can easily be signaled to them by setting the CE (congestion
 experienced) mark. Effectively, LOOPS converts a packet loss (which
 would be a congestion indication) to a CE mark (which also is a
 congestion indication).

 In effect, LOOPS can be used to convert a path segment that does not
 yet use CE marks for congestion indication, and drops packets
 instead, into a segment that marks for congestion and does not drop
 packets except in extreme cases, incurring the benefits of Using
 Explicit Congestion Notification (ECN) [RFC8087]. We speak about the
 "drop-to-mark" function of LOOPS.

3. Simplifying assumptions

 The above notwithstanding, Implementations may want to make use of
 indicators such as transport layer port numbers to partition a tunnel
 flow into separate application flows, e.g., for active queue
 management (AQM). Any such functionality is orthogonal to the LOOPS
 protocol itself and thus out of scope for the present document.

 One observation that simplifies the design of LOOPS in comparison to
 that of a reliable transport protocol is that LOOPS does not _have_
 to recover every packet loss. Therefore, probabilistic approaches,
 and simply giving up after some time has elapsed, can simplify the
 protocol significantly.

 For now, we assume that LOOPS segments that may line up on an end-to-
 end path operate independently of each other. Since the objective of
 LOOPS ultimately is to assist the end-to-end protocol, it is likely
 that some cooperation between them would be beneficial, e.g., to
 obtain some measurements that cover a larger part of the end-to-end
 path. For instance, cooperating LOOPS segments could try to divide
 up permissible increases to end-to-end latency between them. This is
 out of scope for the present version.

 Another simplifying assumption is that LOOPS nodes have reasonably
 precise absolute time available to them, so there is no need to
 burden the LOOPS protocol with time synchronization. How this is
 achieved is out of scope.

 LOOPS nodes are created and set up (information about their peers,
 parameters) by some control plane mechanism that is out of scope for
 this specification. This means there is no need in the LOOPS
 protocol itself to manage setup information.

Welzl & Bormann Expires 14 January 2021 [Page 8]

Internet-Draft LOOPS July 2020

4. LOOPS Architecture

 From the above, the following architecture is derived for LOOPS.

 LOOPS governs the segment from an ingress node to an egress node,
 which is part of one or more end-to-end paths. Often, a LOOPS
 segment will operate on aggregate traffic from many such end-to-end
 paths.

 The LOOPS protocol itself does not define how a LOOPS segment and the
 protocol entities in the ingress and egress node are set up. We
 expect that a _setup protocol_ on the control plane will provide some
 setup information to the two nodes, including when to start and to
 tear down processing.

 Each LOOPS segment governs traffic on one direction in the segment.
 The LOOPS ingress adds _forward information_ to that traffic; the
 LOOPS egress removes the forward information and sends some _reverse
 information_ to inform the behavior of the ingress.

 Hence, in the data plane, forward information is added to each data
 packet. Reverse information can be sent in separate packets (e.g.,
 Geneve control-only packets [I-D.ietf-nvo3-geneve]) and/or
 piggybacked on a related, reverse-direction LOOPS flow, similar to
 the way the forward information for that flow is carried. The setup
 protocol is used to provide the relationship between the LOOPS
 segments in the two directions that is used for piggybacking reverse
 information.

 The above describes the "tunnel mode". A transparent mode is
 described in Appendix B, which does not modify the data packets and
 therefore needs to send any forward information (if needed, e.g., for
 FEC) in separate packets, usually aggregated.

 The LOOPS _generic information set_ defines what information is
 provided as setup information, forward information, and reverse
 information. _Bindings_ map this information set to specific control
 plane and data plane protocols, including defining the specific
 encoding being used. Where separate packets (outside the data plane
 protocols being used) need to be sent, a special UDP-based protocol
 needs to be defined as well. The various bindings aim for some
 commonality, so that an implementation for multiple bindings does not
 need to support gratuitous variety between them.

Welzl & Bormann Expires 14 January 2021 [Page 9]

Internet-Draft LOOPS July 2020

5. LOOPS Generic Information Set

 This section sketches a generic information set for the LOOPS
 protocol. Entries marked with (*) are items that may not be
 necessary and probably should be left out of an initial
 specification.

5.1. Setup Information

 Setup Information might include:

 * encapsulation protocol in use, and its vital parameters

 * identity of LOOPS ingress and LOOPS egress; information relevant
 for running the encapsulation protocol such as port numbers

 * target maximum latency increase caused by the operation of LOOPS
 on this segment

 * maximum retransmission count (*)

5.2. Forward Information

 In the forward information, we have identified:

 * tunnel type (a few bits, meaning agreed between Ingress and
 Egress)

 * packet sequence number PSN (20+ bits), counting the data packets
 forwarded transmitted by the LOOPS ingress (i.e., retransmissions
 re-use the PSN)

 * an "ACK desirable" flag (one bit, usually set for a certain
 percentage of the data packets only)

 * an optional blob, to be echoed by the egress

 * anything that the FEC scheme needs.

 The first four together (say, 3+24+4+1) might even fit into 32 bits,
 but probably need up to 48 bits total. FEC info of course often
 needs more space.

 (Note that in this proposal there is no timestamp in the forward
 information; see Section 6.3.)

Welzl & Bormann Expires 14 January 2021 [Page 10]

Internet-Draft LOOPS July 2020

 24 bits of PSN, minus one bit for sequence number arithmetic, gives 8
 million packets (or 2.4 GB at typical packet sizes) per worst-case
 RTT. So if that is, say, 30 seconds, this would be enough to fill
 640 Mbit/s.

5.3. Reverse Information

 For the reverse information, we have identified:

 * one optional block 1, possibly repeated:

 - PSN being acknowledged

 - absolute time of reception for the packet acknowledged (PSN)

 - the blob, if present, echoed back

 * one optional block 2, possibly repeated:

 - an ACK bitmap (based on PSN), always starting at a multiple of
 8

 - a delta indicating the end PSN of the bitmap (actually the
 first PSN that is beyond it), using (Acked-PSN & ˜7) +
 8*(delta+1) as the end of the bitmap. Acked-PSN in that
 formula is the previous block 1 PSN seen in this packet, or 0
 if none so far.

 Block 1 and Block 2 can be interspersed and repeated. They can be
 piggybacked on a reverse direction data packet or sent separately if
 none occurs within some timeout. They will usually be aggregated in
 some useful form. Block 1 information sets are only returned for
 packets that have "ACK desirable" set. Block 2 information is sent
 by the receiver based on some saturation scheme (e.g., at least three
 copies for each PSN span over time). Still, it might be possible to
 go down to 1 or 2 amortized bytes per forward packet spent for all
 this.

Welzl & Bormann Expires 14 January 2021 [Page 11]

Internet-Draft LOOPS July 2020

 The latency calculation is done by the sender, who occasionally sets
 "ACK desirable", and notes down the absolute time of transmission for
 this data packet (the timekeeping can be done quite efficiently as
 deltas). Upon reception of a block 1 ACK, it can then subtract that
 from the absolute time of reception indicated. This assumes time
 synchronization between the nodes is at least as good as the
 precision of latency measurement needed, which should be no problem
 with IEEE 1588 PTP synchronization (but could be if using NTP-based
 synchronization only). A sender can freely garbage collect noted
 down transmission time information; doing this too early just means
 that the quality of the RTT sampling will reduce.

6. LOOPS General Operation

 In the Tunnel Mode described in the main body of this document, LOOPS
 information is carried by some tunnel encapsulation.

6.1. Initial Packet Sequence Number

 There is no connection establishment procedure in LOOPS. The initial
 PSN is assigned unilaterally by the LOOPS Ingress.

 Because of the short time that is usually set in the maximum latency
 increase, there is little damage from a collision of PSNs with
 packets still in flight from previous instances of LOOPS.

6.1.1. Minimizing collisions

 If desired, collisions can be minimized by assigning initial PSNs
 randomly, or using stable storage. Random assignment is more useful
 for longer PSNs, where the likelihood of overlap will be low. The
 specific way a LOOPS ingress uses stable storage is a local matter
 and thus out of scope. (Implementation note: this can be made to
 work similar to secure nonce generation with write attenuation: Say,
 every 10000 packets, the sender notes down the PSN into stable
 storage. After a reboot, it reloads the PSN and adds 10000 in
 sequence number arithmetic [RFC1982], plus maybe another 10000 so the
 sender does not have to wait for the store operation to succeed
 before sending more packets.)

6.1.2. Optional Initial PSN procedure

 As a potential option (to be discussed), an initial packet sequence
 number could be communicated using a simple two-bit protocol, based
 on an I flag (Initial PSN) carried in the forward information and an
 R flag (Initial PSN Received) in the reverse information. This
 procedure essentially clears the egress of any previous state,
 however, the benefits of this procedure are limited.

Welzl & Bormann Expires 14 January 2021 [Page 12]

Internet-Draft LOOPS July 2020

 The initial PSN is assigned unilaterally by the LOOPS ingress,
 selected randomly. The ingress will keep setting the I flag to one
 when it starts to send packets from a new beginning or whenever it
 believes there is a need to notify the egress about a new initial
 PSN. The ingress will stop setting the I flag when it receives an
 acknowledgement with the R flag set from the egress.

 When the LOOPS egress receives a packets with the I flag set, it
 stops performing services that assume a sequential PSN. The egress
 will no longer provide acknowledgement information for the packets
 with PSN smaller than this new initial PSN (per sequence number
 arithmetic [IEN74]). The egress sends acknowledgement information
 back without any delay by echoing the value of the I flag in the R
 flag. This also means the egress unsets the R flag in subsequent
 acknowledgements for packets with the I flag unset.

 It may happen that the first few packets are lost in an initial PSN
 assignment process. In this case, the loss of these packets is not
 detectable by the LOOPS ingress since the first received PSN will be
 treated as an initial PSN at the egress. This is an acceptable
 temporary performance degradation: LOOPS does not intend to provide
 perfect reliability, and LOOPS usually applies to the aggregated
 traffic over a tunnel so that the initial PSN assignment happens
 infrequently.

6.2. Acknowledgement Generation

 A data packet forwarded by the LOOPS ingress always carries PSN
 information. The LOOPS egress uses the largest newly received PSN
 with the "ACK desired" bit as the ACK number in the block 1 part of
 the acknowledgement. This means that the LOOPS ingress gets to
 modulate the number of acknowledgement sent by the LOOPS egress.
 However, whenever an out-of-order packet arrives while there still
 are "holes" in the PSNs received, the LOOPS receiver should generate
 a block 2 acknowledgement immediately that the LOOPS sender can use
 as an ACK list.

 Reverse information can be piggybacked in a reverse direction data
 packet. When the reverse direction has no user data to be sent, a
 pure reverse information packet needs to be generated. This may be
 based on a short delay during which the LOOPS egress waits for a data
 packet to piggyback on. (To reduce MTU considerations, the egress
 could wait for less-than-full data packets.)

Welzl & Bormann Expires 14 January 2021 [Page 13]

Internet-Draft LOOPS July 2020

6.3. Measurement

 When sending a block 1 acknowledgement, the LOOPS egress indicates
 the absolute time of reception of the packet. The LOOPS ingress can
 subtract the absolute time of transmission that it still has
 available, resulting in one high quality latency sample. (In an
 alternative design, the forward information could include the
 absolute time of transmission as well, and block1 information would
 echo it back. This trades memory management at the ingress for
 increased bandwidth and MTU reduction.)

 When a data packet has been transmitted, it may not be clear which
 specific copy is acknowledged in a block 1 acknowledgement: the
 acknowledgement for the initial (or, more generally, an earlier) copy
 may have been delayed (ACK ambiguity)). The LOOPS ingress therefore
 SHOULD NOT base its measurements on acknowledgements for
 retransmitted data packets. One way to achieve this is by not
 setting the "ACK desired" bit on retransmissions in the first place.

 The LOOPS ingress can also use the time of reception of the block 1
 acknowledgement to obtain a segment RTT sample. Note that this will
 include any wait time the LOOPS egress incurs while waiting for a
 piggybacking opportunity -- this is appropriate, as all uses of an
 RTT will be for keeping a retransmission timeout.

 To maintain quality of information during idle times, the LOOPS
 ingress may send keepalive packets, which are discarded at the LOOPS
 egress after sending acknowledgements. The indication that a packet
 is a keepalive packet is dependent on the encapsulation protocol.

6.3.1. Ingress-relative timestamps

 As an optional procedure, the ingress node can attach a small blob of
 data to a forward packet that carries an ACK desired flag; this blob
 is then echoed by the egress in its block 1 acknowledgement. This is
 typically used to attach a timestamp on a time scale defined by the
 ingress; we speak of an ingress-relative timestamp. Alternatively,
 the ingress can keep a timestamp in its local storage, associated
 with the PSN of the packet that carries an ACK desired flag; it can
 then retrieve this timestamp when the block 1 acknowledgement
 arrives.

 In either case, the LOOPS ingress keeps track of the local segment
 round trip time (LRTT) based on the (saved or received) timestamp and
 the arrival time of the block 1 acknowledgement, by setting the ACK
 Desired flag (D flag) occasionally (several times per RTT) and
 saving/including a sending timestamp for/in the packet.

Welzl & Bormann Expires 14 January 2021 [Page 14]

Internet-Draft LOOPS July 2020

 As the egress will send block 1 acknowledgement information right
 away when it receives a packet with the D flag set, the measurement
 of LRTT is more accurate for such packets. A smoothed local segment
 round trip time S_LRTT can be computed in a similar way as defined by
 [RFC0793]. A recent minimum value of LRTT is also kept as min_LRTT.
 S_LRTT is used as a basis for the overall timing of retransmission
 and state management.

 Retransmitted packets MUST NOT be used for local segment round trip
 time (LRTT) calculation.

6.3.2. ACK generation

 A block 1 acknowledgement is generated based on receiving a forward
 packet with a D flag.

 The way block 2 acknowledgement information is sent is more subject
 to control by the egress. Generally, the egress will aggregate ACK
 bits for at least K packets before sending a block 2; this can be
 used to amortize the overhead to close to a couple of bits per ACK.
 In order to counter loss of reverse information packets, an egress
 will also want to send an ACK bit more than once -- a saturation
 value of 3 or more may be chosen based on setup information.
 Typically, ACK bits already sent will be prepended to ACK bits that
 are new in this block 2 information set. If K packets do not
 accumulate for a while, the egress will send one or more packets with
 block 2 information that covers the unsent ACK bits it has so far.

 (Discussion: This works best if the egress has information both about
 the S_RTT and min_RTT that the ingress uses and the reverse packet
 loss rate.)

6.4. Loss detection and Recovery

 There are two ways for LOOPS local recovery, retransmission and FEC.

6.4.1. Local Retransmission

 When retransmission is used as recovery mechanism, the LOOPS ingress
 detects a packet loss by not receiving an ACK for the packet within
 the time expected based on an RTO value (which might be calculated as
 in [RFC6298]). Packet retransmission should then not be performed
 more than once within an LRTT.

Welzl & Bormann Expires 14 January 2021 [Page 15]

Internet-Draft LOOPS July 2020

 When a retransmission is desired, the LOOPS ingress performs the
 local in-network recovery by retransmitting the packet. Further
 retransmissions may be desirable if the lack of ACK is persistent
 beyond an RTO, as long as the maximum latency increase is not
 reached.

6.4.2. FEC

 FEC is another way to perform local recovery. When FEC is in use, a
 FEC header is sent with data packets as well as with special repair
 packets added to the flow. The specific FEC scheme used could be
 defined in the Setup Information, using a mechanism like [RFC5052].
 The FEC rate (amount of redundancy added) and possibly the FEC scheme
 could be unilaterally adjusted by the LOOPS ingress in an adaptive
 mechanism based on the measurement information.

6.5. Discussion

 Without progress in the way that end-host transport protocols handle
 reordering, LOOPS will be unable to prevent end-to-end
 retransmissions that duplicate effort that is spent in local
 retransmissions. It depends on parameters of the path segment
 whether this wasted effort is significant or not.

 One remedy against this waste could be the introduction of
 resequencing at the LOOPS Egress node. This increases overall mean
 packet latency, but does not always increase actual end-to-end data
 stream latency if a head-of-line blocking transport such as TCP is in
 use. For applications with a large percentage of legacy TCP end-
 hosts and sufficient processing capabilities at the LOOPS Egress
 node, resequencing may be a viable choice. Note that resequencing
 could be switched off and on depending on some measurement
 information.

 The packet numbering scheme chosen by LOOPS already provides the
 necessary information for the LOOPS Egress to reconstruct the
 sequence of data packets at the LOOPS ingress.

7. Sketches of Bindings to Tunnel Protocols

 The LOOPS information defined above in a generic way can be mapped to
 specific tunnel encapsulation protocols. A sketch for the tunnel
 protocol Geneve is given below (Section 7.1). The actual
 encapsulation can be designed in a "native" way by putting each of
 the various elements into the TLV format of the encapsulation
 protocol, or it can be achieved by providing single TLVs for forward
 and reverse information and using some generic encoding of both kinds
 of information as shown in Appendix B.3.

Welzl & Bormann Expires 14 January 2021 [Page 16]

Internet-Draft LOOPS July 2020

7.1. Embedding LOOPS in Geneve

 Geneve [I-D.ietf-nvo3-geneve] is an extensible overlay protocol which
 can embed LOOPS functions. Geneve uses TLVs to carry optional
 information between NVEs. NVE is logically the same entity as the
 LOOPS node.

 The Geneve header has a mandatory Virtual Network Identifier (VNI)
 field. The specific VNI value to be used is part of the setup
 information for the LOOPS tunnel.

 More details for a Geneve binding for LOOPS can be found in
 [I-D.bormann-loops-geneve-binding].

8. IANA Considerations

 No IANA action is required at this stage. When a LOOPS
 representation is designed for a specific tunneling protocol, new
 codepoints will be required in the registries that pertain to that
 protocol.

9. Security Considerations

 The security of a specific LOOPS segment will depend both on the
 properties of the generic information set described here and those of
 the encapsulation protocol employed. The security considerations of
 the encapsulation protocol will apply, as will the protection
 afforded by any security measures provided by the encapsulation
 protocol. Any LOOPS encapsulation specification is expected to
 provide information about preferred configurations of the
 encapsulation protocol employed, including security mechanisms, and
 to provide a security considerations section discussing the
 combination. The following discussion aims at discussing security
 considerations that will be common between different encapsulations.

9.1. Threat model

 Attackers might attempt to perturb the operation of a LOOPS segment
 for a number of purposes:

 * Denial of Service: Damaging the ability of LOOPS to recover
 packets, or damaging packet forwarding through the LOOPS segment
 in general.

 * Attacks on Confidentiality or Integrity: Obtaining the content of
 data packets, modifying them, injecting new or suppressing
 specific data packets.

Welzl & Bormann Expires 14 January 2021 [Page 17]

Internet-Draft LOOPS July 2020

 For the purposes of these security considerations, we can distinguish
 three classes of attackers:

 1. on-path read-write: The attacker sees packets under way on the
 segment and can modify, inject, or suppress them.

 In this case there is really nothing LOOPS can do, except for
 acting as a full security protocol on its own, which would be the
 task of the encapsulation protocol. Without that, attackers
 already can manipulate the packet stream as they wish. This
 class of attackers is considered out of scope for these security
 considerations.

 2. on-path read + inject: The attacker sees packets under way on the
 segment and can inject new packets.

 For this case, LOOPS itself similarly cannot add to the
 confidentiality of the data stream. However, LOOPS could protect
 against denial of service against its own protocol operation and,
 in a limited fashion, against attacks on integrity that wouldn’t
 already have been possible by packet injection without LOOPS.

 3. off-path inject: The attacker can inject new packets, but cannot
 see existing packets under way on the segment.

 Similar considerations apply as for class 2, except that the
 "blind" class 3 attacker might need to guess information it could
 have extracted from the packet stream in class 2.

9.2. Discussion

 Class 2 attackers can see e.g. sequence numbers and can inject, but
 not modify traffic. Attacks might include injecting false ACKs,
 initial PSN flags, ... (TBD)

 Class 3 ("blind") attackers might still be able to fake initial PSN
 bits + false ACKs, but will have a harder time otherwise as it would
 need to guess the PSN range in which it can wreak havoc. Even random
 guesses will sometimes hit, though, so the protocol needs to be
 robust to such injection attacks. ... (TBD)

10. References

10.1. Normative References

Welzl & Bormann Expires 14 January 2021 [Page 18]

Internet-Draft LOOPS July 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

10.2. Informative References

 [RFC0793] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [RFC1982] Elz, R. and R. Bush, "Serial Number Arithmetic", RFC 1982,
 DOI 10.17487/RFC1982, August 1996,
 <https://www.rfc-editor.org/info/rfc1982>.

 [RFC3708] Blanton, E. and M. Allman, "Using TCP Duplicate Selective
 Acknowledgement (DSACKs) and Stream Control Transmission
 Protocol (SCTP) Duplicate Transmission Sequence Numbers
 (TSNs) to Detect Spurious Retransmissions", RFC 3708,
 DOI 10.17487/RFC3708, February 2004,
 <https://www.rfc-editor.org/info/rfc3708>.

 [RFC5052] Watson, M., Luby, M., and L. Vicisano, "Forward Error
 Correction (FEC) Building Block", RFC 5052,
 DOI 10.17487/RFC5052, August 2007,
 <https://www.rfc-editor.org/info/rfc5052>.

 [RFC5862] Yasukawa, S. and A. Farrel, "Path Computation Clients
 (PCC) - Path Computation Element (PCE) Requirements for
 Point-to-Multipoint MPLS-TE", RFC 5862,
 DOI 10.17487/RFC5862, June 2010,
 <https://www.rfc-editor.org/info/rfc5862>.

 [RFC6040] Briscoe, B., "Tunnelling of Explicit Congestion
 Notification", RFC 6040, DOI 10.17487/RFC6040, November
 2010, <https://www.rfc-editor.org/info/rfc6040>.

 [RFC6298] Paxson, V., Allman, M., Chu, J., and M. Sargent,
 "Computing TCP’s Retransmission Timer", RFC 6298,
 DOI 10.17487/RFC6298, June 2011,
 <https://www.rfc-editor.org/info/rfc6298>.

Welzl & Bormann Expires 14 January 2021 [Page 19]

Internet-Draft LOOPS July 2020

 [RFC6330] Luby, M., Shokrollahi, A., Watson, M., Stockhammer, T.,
 and L. Minder, "RaptorQ Forward Error Correction Scheme
 for Object Delivery", RFC 6330, DOI 10.17487/RFC6330,
 August 2011, <https://www.rfc-editor.org/info/rfc6330>.

 [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data
 Definition Language (CDDL): A Notational Convention to
 Express Concise Binary Object Representation (CBOR) and
 JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610,
 June 2019, <https://www.rfc-editor.org/info/rfc8610>.

 [RFC8087] Fairhurst, G. and M. Welzl, "The Benefits of Using
 Explicit Congestion Notification (ECN)", RFC 8087,
 DOI 10.17487/RFC8087, March 2017,
 <https://www.rfc-editor.org/info/rfc8087>.

 [I-D.ietf-tcpm-rack]
 Cheng, Y., Cardwell, N., Dukkipati, N., and P. Jha, "RACK:
 a time-based fast loss detection algorithm for TCP", Work
 in Progress, Internet-Draft, draft-ietf-tcpm-rack-08, 9
 March 2020, <http://www.ietf.org/internet-drafts/draft-
 ietf-tcpm-rack-08.txt>.

 [I-D.ietf-nvo3-geneve]
 Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
 Network Virtualization Encapsulation", Work in Progress,
 Internet-Draft, draft-ietf-nvo3-geneve-16, 7 March 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-nvo3-
 geneve-16.txt>.

 [I-D.li-tsvwg-loops-problem-opportunities]
 Yizhou, L., Zhou, X., Boucadair, M., Wang, J., and F. Qin,
 "LOOPS (Localized Optimizations on Path Segments) Problem
 Statement and Opportunities for Network-Assisted
 Performance Enhancement", Work in Progress, Internet-
 Draft, draft-li-tsvwg-loops-problem-opportunities-05, 6
 July 2020, <http://www.ietf.org/internet-drafts/draft-li-
 tsvwg-loops-problem-opportunities-05.txt>.

 [I-D.ietf-tsvwg-tunnel-congestion-feedback]
 Wei, X., Yizhou, L., Boutros, S., and L. Geng, "Tunnel
 Congestion Feedback", Work in Progress, Internet-Draft,
 draft-ietf-tsvwg-tunnel-congestion-feedback-07, 5 May
 2019, <http://www.ietf.org/internet-drafts/draft-ietf-
 tsvwg-tunnel-congestion-feedback-07.txt>.

Welzl & Bormann Expires 14 January 2021 [Page 20]

Internet-Draft LOOPS July 2020

 [I-D.bormann-loops-geneve-binding]
 Bormann, C., "Embedding LOOPS in Geneve", Work in
 Progress, Internet-Draft, draft-bormann-loops-geneve-
 binding-01, 12 June 2020, <http://www.ietf.org/internet-
 drafts/draft-bormann-loops-geneve-binding-01.txt>.

 [IEN74] Plummer, W.W., "Sequence Number Arithmetic", Internet
 Experiment Note 74, September 1978.

Appendix A. Protocol used in Prototype Implementation

 This appendix describes, in a somewhat abstracted form, the protocol
 as used in a prototype implementation, as described by Yizhou Li, and
 Xingwang Zhou.

 The prototype protocol can be run in one of two modes (defined by
 preconfiguration):

 * Retransmission mode

 * Forward Error Correction (FEC) mode

 Forward information is piggybacked in data packets.

 Reverse information can be carried in a pure acknowledgement packet
 or piggybacked when carrying packets for the inverse direction.

 The forward information includes:

 * Packet Sequence Number (PSN) (32 bits): This identifies a packet
 over a specific overlay segment from a specific LOOPS Ingress. If
 a packet is retransmitted by LOOPS, the retransmission uses the
 original PSN.

 * Timestamp (32 bits): Information, in a format local to the LOOPS
 ingress, that provides the time when the packet was sent. In the
 current implementation, a 32-bit unsigned value specifying the
 time delta in some granularity from the epoch time to the sending
 time of the packet carrying this timestamp. The granularity can
 be from 1 ms to 1 second. The epoch time follows the current TCP
 practice which is 1 January 1970 00:00:00 UTC. Note that a
 retransmitted packet uses its own Timestamp.

 * FEC Info for Block Code (56 bits): This header is used in FEC
 mode. It currently only provides for a block code FEC scheme. It
 includes the Source Block Number (SBN), Encoding Symbol ID (ESI),
 number of symbols in a single source block and symbol size.
 Appendix A.1 gives more details on FEC.

Welzl & Bormann Expires 14 January 2021 [Page 21]

Internet-Draft LOOPS July 2020

 The reverse information includes:

 * ACK Number (32 bits): The largest (in sequence number arithmetic
 [RFC1982]) PSN received so far.

 * ACK List (variable): This indicates an array of PSN numbers to
 describe the PSN "holes" preceding the ACK number. It
 conceptually lists the PSNs of every packet perceived as lost by
 the LOOPS egress. In actual use, it is truncated.

 * Echoed Timestamp (32 bits): The timestamp received with the packet
 being acknowledged.

A.1. Block Code FEC

 The prototype currently uses a block code FEC scheme (RaptorQ
 [RFC6330]). The fields in the FEC Info forward information are:

 * Source Block Number (SBN): 16 bits. An integer identifier for the
 source block that the encoding symbols within the packet relate
 to.

 * Encoding Symbol ID (ESI): 16 bits. An integer identifier for the
 encoding symbols within the packet.

 * K: 8 bits. Number of symbols in a single source block.

 * T: 16 bits. Symbol size in bytes.

 The LOOPS Ingress uses the data packet in Figure 1 to generate the
 encoding packet. Both source packets and repair packets carry the
 FEC header information; the LOOPS Egress reconstructs the data
 packets from both kinds of packets. The LOOPS Egress currently
 resequences the forwarded and reconstructed packets, so they are
 passed on in-order when the lost packets are recoverable within the
 source block.

 The LOOPS Nodes need to agree on the use of FEC block mode and on the
 specific FEC Encoding ID to use; this is currently done by
 configuration.

Appendix B. Transparent mode

 This appendix defines a very different way to provide the LOOPS
 services, "transparent mode". (We call the protocol described in the
 main body of the document "encapsulated mode".)

Welzl & Bormann Expires 14 January 2021 [Page 22]

Internet-Draft LOOPS July 2020

 In transparent mode, the idea is that LOOPS does not meddle with the
 forward transmission of data packets, but runs on the side exchanging
 additional information.

 An implementation could be based on conventional forwarding switches
 that just provide a copy of the ingress and egress packet stream to
 the LOOPS implementations. The LOOPS process would occasionally
 inject recovered packets back into the LOOPS egress node’s forwarding
 switch, see Figure 3.

 |
 +-------+---+
 | | |
 | +----+--------+ +-------------------+ |
 | | | copy | | | | |
 | | |----------------> LOOPS ingress | |
 | | | | | | ^ | |
 | +----+--------+ +-----|-----|-------+ |
 | data|packets forward| |reverse |
 | | info| |info |
 +-------+------------------|-----|------------------+
 | | |
 +-------+------------------|-----|------------------+
 | | | | | | | |
 | +----+---------+ +----|-----|----------+ |
 | | | copy | | v | | |
 | | |---------|---|---> LOOPS egress | |
 | | | | | | |
 | | |<--------|---|---- inject | |
 | +----+---------+ +---------------------+ |
 | | |
 +-------+---+
 |
 v

 Figure 3: LOOPS Transparent Mode

 The obvious advantage of transparent mode is that no encapsulation is
 needed, reducing processing requirements and keeping the MTU
 unchanged. The obvious disadvantage is that no forward information
 can be provided with each data packet, so a replacement needs to be
 found for the PSN (packet sequence number) employed in encapsulated
 mode. Any forward information beyond the data packets is sent in
 separate packets exchanged directly between the LOOPS nodes.

Welzl & Bormann Expires 14 January 2021 [Page 23]

Internet-Draft LOOPS July 2020

B.1. Packet identification

 Retransmission mode and FEC mode differ in their needs for packet
 identification. For retransmission mode, a somewhat probabilistic
 accuracy of the packet identification is sufficient, for FEC mode,
 packet identification should not make mistakes (as these would lead
 to faultily reconstructed packets).

 In Retransmission mode, misidentification of a packet could lead to
 measurement errors as well as missed retransmission opportunities.
 The latter will be fixed end-to-end. The tolerance for measurement
 errors would influence the degree of accuracy that is aimed for.

 Packet identification can be based on a cryptographic hash of the
 packet, computed in LOOPS ingress and egress using the same algorithm
 (excluding fields that can change in transit, such as TTL/hop limit).
 The hash can directly be used as a packet number, or it can be sent
 in the forward information together with a packet sequence number,
 establishing a mapping.

 For probabilistic packet identification, it is almost always
 sufficient to hash the first few (say, 64) bytes of the packet; all
 known transport protocols keep sufficient identifying information in
 that part (and, for encrypted protocols, the entropy will be
 sufficient). Any collisions of the hash could be used to disqualify
 the packet for measurement purposes, minimizing the measurement
 errors; this could allow rather short packet identifiers in
 retransmission mode.

 For FEC mode, the packet identification together with the per-packet
 FEC information needs to be sent in the (separate) forward
 information, so that a systematic code can be reconstructed. For
 retransmission mode, there is no need to send any forward information
 for most packets, or a mapping from packet identifiers to packet
 sequence numbers could be sent in the forward information (probably
 in some aggregated form). The latter would allow keeping the
 acknowledgement form described in the main body (with aggregate
 acknowledgement); otherwise, packet identifiers need to be
 acknowledged. With this change, the LOOPS egress will send reverse
 information as in the encapsulating LOOPS protocol.

Welzl & Bormann Expires 14 January 2021 [Page 24]

Internet-Draft LOOPS July 2020

B.2. Generic information and protocol operation

 With the changes outlined above, transparent mode operates just as
 encapsulated mode. If packet sequence numbers are not used, there is
 no use for block2 reverse information; if they are used, a new block3
 needs to be defined that provides the mapping from packet identifiers
 to packet sequence numbers in the forward information. To avoid MTU
 reduction, some mechanism will be needed to encapsulate the actual
 FEC information (additional packets) in the forward information.

B.3. A hybrid mode

 Figure 3 can be modified by including a GRE encapsulator into the top
 left corner and a GRE decapsulator in the bottom left corner. This
 provides more defined ingress and egress points, but it also provides
 an opportunity to add a packet sequence number at the ingress. The
 copies to the top right and bottom right corners are the encapsulated
 form, i.e., include the sequence number.

 The GRE packet header then has the form:

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+
 |0|0|0|1| 000000000 | 000 | Protocol Type |
 +-+
 | Sequence Number |
 +-+

 The forward and reverse information can be designed closer to the
 approach in the main body of the document, to be exchanged using UDP
 packets between top right ingress and bottom right egress using a
 port number allocated for this purpose.

 Rough ideas for both directions are given below in CDDL [RFC8610].
 This information set could be encoded in CBOR or in a bespoke
 encoding; details such as this can be defined later.

Welzl & Bormann Expires 14 January 2021 [Page 25]

Internet-Draft LOOPS July 2020

 forward-information = [
 [rel-psn, ack-desired, ? fec-info] /
 fec-repair-data
]

 rel-psn = uint; relative packet sequence number
 ; always given as a delta from the previous one in the array
 ; starting out with a "previous value" of 0

 ack-desired = bool

 fec-info = [
 sbn: uint, ; Source Block Number
 esi: uint, ; Encoding Symbol ID
 ? (
 nsssb: uint; number of symbols in a single source block
 ss: uint; symbol size
)
]

 fec-repair-data = [
 repair-data: bytes
 ? (
 sbn: uint, ; Source Block Number
 esi: uint, ; Encoding Symbol ID
)
]

 If left out for a sequence number, the fec-info block is constructed
 by adding one to the previous one. fec-repair-data contain repair
 symbols for the sbn/esi given (which, again, are reconstructed from
 context if not given).

 reverse-information = [
 block1 / block2
]

 block1 = [rel-psn, timestamp]
 block2 = [end-psn-delta: uint, acked-bits: bytes]

 The acked-bits in a block2 is a bitmap that gives acknowledgments for
 received data packets. The bitmap always comes as a multiple of 8
 bits (all bytes are filled in with 8 bits, each identifying a PSN).
 The end PSN of the bitmap (actually the first PSN that would be
 beyond it) is computed from the current PSN as set by rel-psn,
 rounded down to a multiple of 8, and adding 8*(end-psn-delta+1) to
 that value.

Welzl & Bormann Expires 14 January 2021 [Page 26]

Internet-Draft LOOPS July 2020

Acknowledgements

 Sami Boutros helped with sketching the use of Geneve (Section 7.1).

 Michael Welzl has been supported by the Research Council of Norway
 under its "Toppforsk" programme through the "OCARINA" project.

Authors’ Addresses

 Michael Welzl
 University of Oslo
 PO Box 1080 Blindern
 N-0316 Oslo
 Norway

 Phone: +47 22 85 24 20
 Email: michawe@ifi.uio.no

 Carsten Bormann (editor)
 Universität Bremen TZI
 Postfach 330440
 D-28359 Bremen
 Germany

 Phone: +49-421-218-63921
 Email: cabo@tzi.org

Welzl & Bormann Expires 14 January 2021 [Page 27]

