
Network Working Group D. Schinazi
Internet-Draft Google LLC
Intended status: Experimental 16 April 2020
Expires: 18 October 2020

 The CONNECT-UDP HTTP Method
 draft-schinazi-masque-connect-udp-00

Abstract

 This document describes the CONNECT-UDP HTTP method. CONNECT-UDP is
 similar to the HTTP CONNECT method, but it uses UDP instead of TCP.

 Discussion of this work is encouraged to happen on the MASQUE IETF
 mailing list masque@ietf.org or on the GitHub repository which
 contains the draft: https://github.com/DavidSchinazi/masque-drafts.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 18 October 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Schinazi Expires 18 October 2020 [Page 1]

Internet-Draft CONNECT-UDP April 2020

Table of Contents

 1. Introduction . 2
 1.1. Conventions and Definitions 2
 2. Supported HTTP Versions 2
 3. The CONNECT-UDP Method 3
 4. Encoding of Proxied UDP Packets 4
 5. Datagram-Flow-Id Header Definition 5
 6. Server Handling . 5
 7. Security Considerations 5
 8. IANA Considerations . 5
 8.1. HTTP Method . 5
 8.2. HTTP Header . 6
 9. Normative References . 6
 Acknowledgments . 7
 Author’s Address . 7

1. Introduction

 This document describes the CONNECT-UDP HTTP method. CONNECT-UDP is
 similar to the HTTP CONNECT method (see section 4.3.6 of [RFC7231]),
 but it uses UDP [UDP] instead of TCP [TCP].

 Discussion of this work is encouraged to happen on the MASQUE IETF
 mailing list masque@ietf.org or on the GitHub repository which
 contains the draft: https://github.com/DavidSchinazi/masque-drafts.

1.1. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

2. Supported HTTP Versions

 The CONNECT-UDP method is defined for all versions of HTTP. When the
 HTTP version used runs over QUIC [QUIC], UDP payloads can be sent
 over QUIC DATAGRAM frames [DGRAM]. Otherwise they are sent on the
 stream where the CONNECT-UDP request was made. Note that when
 multiple proxies are involved in a CONNECT-UDP request, all the HTTP
 connections along the path need to be using HTTP/3 [H3] or later in
 order for UDP payloads to be sent over QUIC DATAGRAM frames.
 Additionally, when the HTTP version in use does not support
 multiplexing streams (such as HTTP/1.1), then any reference to
 "stream" in this document is meant to represent the entire
 connection.

Schinazi Expires 18 October 2020 [Page 2]

Internet-Draft CONNECT-UDP April 2020

3. The CONNECT-UDP Method

 The CONNECT-UDP method requests that the recipient establish a tunnel
 over a single HTTP stream to the destination origin server identified
 by the request-target and, if successful, thereafter restrict its
 behavior to blind forwarding of packets, in both directions, until
 the tunnel is closed. Tunnels are commonly used to create an end-to-
 end virtual connection, through one or more proxies, which can then
 be secured using QUIC or another protocol running over UDP.

 A client sending a CONNECT-UDP request MUST send the authority form
 of request-target (Section 5.3 of [RFC7230]); i.e., the request-
 target consists of only the host name and port number of the tunnel
 destination, separated by a colon. For example,

 CONNECT-UDP server.example.com:443 HTTP/1.1
 Host: server.example.com:443

 When using HTTP/2 [H2] or later, CONNECT-UDP requests use HTTP
 pseudo-headers with the following requirements:

 * The ":method" pseudo-header field is set to "CONNECT-UDP".

 * The ":scheme" and ":path" pseudo-header fields MUST be omitted.

 * The ":authority" pseudo-header field contains the host and port to
 connect to (equivalent to the authority-form of the request-target
 of CONNECT-UDP requests (see [RFC7230], Section 5.3)).

 A CONNECT-UDP request that does not conform to these restrictions is
 malformed (see [H2], Section 8.1.2.6).

 The recipient proxy can establish a tunnel either by directly opening
 a UDP socket to the request-target or, if configured to use another
 proxy, by forwarding the CONNECT-UDP request to the next inbound
 proxy. Any 2xx (Successful) response indicates that the sender (and
 all inbound proxies) will switch to tunnel mode immediately after the
 blank line that concludes the successful response’s header section;
 data received after that blank line is from the server identified by
 the request-target. Any response other than a successful response
 indicates that the tunnel has not yet been formed and that the
 connection remains governed by HTTP.

 A tunnel is closed when a tunnel intermediary detects that either
 side has closed its connection: the intermediary MUST attempt to send
 any outstanding data that came from the closed side to the other
 side, close both connections, and then discard any remaining data
 left undelivered.

Schinazi Expires 18 October 2020 [Page 3]

Internet-Draft CONNECT-UDP April 2020

 A server MUST NOT send any Transfer-Encoding or Content-Length header
 fields in a 2xx (Successful) response to CONNECT. A client MUST
 treat a response to CONNECT-UDP containing any Content-Length or
 Transfer-Encoding header fields as malformed.

 A payload within a CONNECT-UDP request message has no defined
 semantics; a CONNECT-UDP request with a non-empty payload is
 malformed.

 Responses to the CONNECT-UDP method are not cacheable.

4. Encoding of Proxied UDP Packets

 When the HTTP connection between client and proxy supports HTTP/3
 datagrams [H3DGRAM], UDP packets can be encoded using QUIC DATAGRAM
 frames. This support is ascertained by checking receipt of the
 H3_DATAGRAM SETTINGS Parameter. Note that when there are multiple
 proxies involved, this support needs to be ascertained on all the
 HTTP connections that will carry proxied UDP packets.

 If the client supports HTTP/3 datagrams and has received the
 H3_DATAGRAM SETTINGS Parameter on this connection, it SHOULD attempt
 to use HTTP/3 datagrams. This is accomplished by requesting a
 datagram flow identifier from the flow identifier allocation service
 [H3DGRAM]. That service generates an even flow identifier, and the
 client sends it to the server by using the "Datagram-Flow-Id" header
 (see Section 5).

 If there are multiple proxies involved, proxies along the chain MUST
 check whether their upstream connection supports HTTP/3 datagrams.
 If it does not, that proxy MUST remove the "Datagram-Flow-Id" header
 before forwarding the CONNECT-UDP request.

 The proxy that is creating the UDP socket to the destination responds
 to the CONNECT-UDP request with a 2xx (Successful) response, and MUST
 echo the "Datagram-Flow-Id" header. Once the client has received the
 "Datagram-Flow-Id" header on the successful response, it knows that
 it can use the HTTP/3 datagram encoding to send proxied UDP packets
 for this particular destination. It then encodes the payload of UDP
 datagrams into the payload of HTTP/3 datagrams.

 Clients MAY optimistically start sending proxied UDP packets before
 receiving the response to its CONNECT-UDP request, noting however
 that those may not be processed by the proxy if it responds to the
 CONNECT-UDP request with a failure, or if they arrive before the
 CONNECT-UDP request.

Schinazi Expires 18 October 2020 [Page 4]

Internet-Draft CONNECT-UDP April 2020

 If HTTP/3 datagrams are not supported, the stream is used to convey
 UDP payloads, by prefixing them with a 16-bit length.

5. Datagram-Flow-Id Header Definition

 "Datagram-Flow-Id" is a Item Structured Header [STRUCT-HDR]. Its
 value MUST be an Integer. Its ABNF is:

 Datagram-Flow-Id = sh-integer

6. Server Handling

 Unlike TCP, UDP is connection-less. The HTTP server that opens the
 UDP socket has no way of knowing whether the destination is
 reachable. Therefore it needs to respond to the CONNECT-UDP request
 without waiting for a TCP SYN-ACK.

 Servers can use connected UDP sockets if their operating system
 supports them, as that allows the HTTP server to rely on the kernel
 to only send it UDP packets that match the correct 5-tuple. If the
 server uses a non-connected socket, it MUST validate the IP source
 address and UDP source port on received packets to ensure they match
 the client’s CONNECT-UDP request. Packets that do not match MUST be
 discarded by the server.

7. Security Considerations

 There are significant risks in allowing arbitrary clients to
 establish a tunnel to arbitrary servers, as that could allow bad
 actors to send traffic and have it attributed to the proxy. Proxies
 that support CONNECT-UDP SHOULD restrict its use to authenticated
 users.

8. IANA Considerations

8.1. HTTP Method

 This document will request IANA to register "CONNECT-UDP" in the HTTP
 Method Registry (IETF review) maintained at
 <https://www.iana.org/assignments/http-methods>.

 +-------------+------+------------+---------------+
 | Method Name | Safe | Idempotent | Reference |
 +-------------+------+------------+---------------+
 | CONNECT-UDP | no | no | This document |
 +-------------+------+------------+---------------+

Schinazi Expires 18 October 2020 [Page 5]

Internet-Draft CONNECT-UDP April 2020

8.2. HTTP Header

 This document will request IANA to register the "Datagram-Flow-Id"
 header in the "Permanent Message Header Field Names" registry
 maintained at <https://www.iana.org/assignments/message-headers>.

 +-------------------+----------+--------+---------------+
 | Header Field Name | Protocol | Status | Reference |
 +-------------------+----------+--------+---------------+
 | Datagram-Flow-Id | http | exp | This document |
 +-------------------+----------+--------+---------------+

9. Normative References

 [DGRAM] Pauly, T., Kinnear, E., and D. Schinazi, "An Unreliable
 Datagram Extension to QUIC", Work in Progress, Internet-
 Draft, draft-ietf-quic-datagram-00, 26 February 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 datagram-00.txt>.

 [H2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext
 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,
 DOI 10.17487/RFC7540, May 2015,
 <https://www.rfc-editor.org/info/rfc7540>.

 [H3] Bishop, M., "Hypertext Transfer Protocol Version 3
 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-
 quic-http-27, 21 February 2020, <http://www.ietf.org/
 internet-drafts/draft-ietf-quic-http-27.txt>.

 [H3DGRAM] Schinazi, D., "Using QUIC Datagrams with HTTP/3", Work in
 Progress, Internet-Draft, draft-schinazi-quic-h3-datagram-
 03, 12 March 2020, <http://www.ietf.org/internet-drafts/
 draft-schinazi-quic-h3-datagram-03.txt>.

 [QUIC] Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed
 and Secure Transport", Work in Progress, Internet-Draft,
 draft-ietf-quic-transport-27, 21 February 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-quic-
 transport-27.txt>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

Schinazi Expires 18 October 2020 [Page 6]

Internet-Draft CONNECT-UDP April 2020

 [RFC7230] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Message Syntax and Routing",
 RFC 7230, DOI 10.17487/RFC7230, June 2014,
 <https://www.rfc-editor.org/info/rfc7230>.

 [RFC7231] Fielding, R., Ed. and J. Reschke, Ed., "Hypertext Transfer
 Protocol (HTTP/1.1): Semantics and Content", RFC 7231,
 DOI 10.17487/RFC7231, June 2014,
 <https://www.rfc-editor.org/info/rfc7231>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [STRUCT-HDR]
 Nottingham, M. and P. Kamp, "Structured Field Values for
 HTTP", Work in Progress, Internet-Draft, draft-ietf-
 httpbis-header-structure-17, 15 March 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-httpbis-
 header-structure-17.txt>.

 [TCP] Postel, J., "Transmission Control Protocol", STD 7,
 RFC 793, DOI 10.17487/RFC0793, September 1981,
 <https://www.rfc-editor.org/info/rfc793>.

 [UDP] Postel, J., "User Datagram Protocol", STD 6, RFC 768,
 DOI 10.17487/RFC0768, August 1980,
 <https://www.rfc-editor.org/info/rfc768>.

Acknowledgments

 This proposal was inspired directly or indirectly by prior work from
 many people. The author would like to thank Eric Rescorla for
 suggesting to use an HTTP method to proxy UDP.

Author’s Address

 David Schinazi
 Google LLC
 1600 Amphitheatre Parkway
 Mountain View, California 94043,
 United States of America

 Email: dschinazi.ietf@gmail.com

Schinazi Expires 18 October 2020 [Page 7]

