
Network Working Group P. Balasubramanian

Internet-Draft Confluent

Intended status: Standards Track Y. Huang

Expires: 31 August 2023 M. Olson

 Microsoft

 27 February 2023

 HyStart++: Modified Slow Start for TCP

 draft-ietf-tcpm-hystartplusplus-14

Abstract

 This document describes HyStart++, a simple modification to the slow

 start phase of congestion control algorithms. Slow start can

 overshoot the ideal send rate in many cases, causing high packet loss

 and poor performance. HyStart++ uses increase in round-trip delay as

 a heuristic to find an exit point before possible overshoot. It also

 adds a mitigation to prevent jitter from causing premature slow start

 exit.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 31 August 2023.

Copyright Notice

 Copyright (c) 2023 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

Balasubramanian, et al. Expires 31 August 2023 [Page 1]

Internet-Draft HyStart++ February 2023

 extracted from this document must include Revised BSD License text as

 described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Revised BSD License.

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. Definitions . 3

 4. HyStart++ Algorithm . 3

 4.1. Summary . 3

 4.2. Algorithm Details . 4

 4.3. Tuning constants and other considerations 6

 5. Deployments and Performance Evaluations 7

 6. Security Considerations 8

 7. IANA Considerations . 8

 8. Acknowledgements . 8

 9. References . 8

 9.1. Normative References 8

 9.2. Informative References 8

 Authors’ Addresses . 9

1. Introduction

 [RFC5681] describes the slow start congestion control algorithm for

 TCP. The slow start algorithm is used when the congestion window

 (cwnd) is less than the slow start threshold (ssthresh). During slow

 start, in absence of packet loss signals, TCP increases cwnd

 exponentially to probe the network capacity. This fast growth can

 overshoot the ideal sending rate and cause significant packet loss

 which cannot always be recovered efficiently.

 HyStart++ uses increase in round-trip delay as a signal to exit slow

 start before potential packet loss occurs as a result of overshoot.

 This is one of two algorithms specified in [HyStart]. After the slow

 start exit, a new Conservative Slow Start (CSS) phase is used to

 determine whether the slow start exit was premature and to resume

 slow start. This mitigation improves performance in presence of

 jitter. HyStart++ reduces packet loss and retransmissions, and

 improves goodput in lab measurements and real world deployments.

 While this document describes Hystart++ for TCP, it can also be used

 for other transport protocols which use slow start such as QUIC

 [RFC9002] or SCTP [RFC9260].

Balasubramanian, et al. Expires 31 August 2023 [Page 2]

Internet-Draft HyStart++ February 2023

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. Definitions

 We repeat here some definition from [RFC5681] to aid the reader.

 SENDER MAXIMUM SEGMENT SIZE (SMSS): The SMSS is the size of the

 largest segment that the sender can transmit. This value can be

 based on the maximum transmission unit of the network, the path MTU

 discovery [RFC1191], [RFC4821] algorithm, RMSS (see next item), or

 other factors. The size does not include the TCP/IP headers and

 options.

 RECEIVER MAXIMUM SEGMENT SIZE (RMSS): The RMSS is the size of the

 largest segment the receiver is willing to accept. This is the value

 specified in the MSS option sent by the receiver during connection

 startup. Or, if the MSS option is not used, it is 536 bytes

 [RFC1122]. The size does not include the TCP/IP headers and options.

 RECEIVER WINDOW (rwnd): The most recently advertised receiver window.

 CONGESTION WINDOW (cwnd): A TCP state variable that limits the amount

 of data a TCP can send. At any given time, a TCP MUST NOT send data

 with a sequence number higher than the sum of the highest

 acknowledged sequence number and the minimum of cwnd and rwnd.

4. HyStart++ Algorithm

4.1. Summary

 [HyStart] specifies two algorithms (a "Delay Increase" algorithm and

 an "Inter-Packet Arrival" algorithm) to be run in parallel to detect

 that the sending rate has reached capacity. In practice, the Inter-

 Packet Arrival algorithm does not perform well and is not able to

 detect congestion early, primarily due to ACK compression. The idea

 of the Delay Increase algorithm is to look for spikes in RTT (round-

 trip time), which suggest that the bottleneck buffer is filling up.

 In HyStart++, a TCP sender uses traditional slow start and then uses

 the "Delay Increase" algorithm to trigger an exit from slow start.

 But instead of going straight from slow start to congestion

 avoidance, the sender spends a number of RTTs in a Conservative Slow

Balasubramanian, et al. Expires 31 August 2023 [Page 3]

Internet-Draft HyStart++ February 2023

 Start (CSS) phase to determine whether the exit from slow start was

 premature. During CSS, the congestion window is grown exponentially

 like in regular slow start, but with a smaller exponential base,

 resulting in less aggressive growth. If the RTT reduces during CSS,

 it’s concluded that the RTT spike was not related to congestion

 caused by the connection sending at a rate greater than the ideal

 send rate, and the connection resumes slow start. If the RTT

 inflation persists throughout CSS, the connection enters congestion

 avoidance.

4.2. Algorithm Details

 The following pseudocode uses a limit, L, to control the

 aggressiveness of the cwnd increase during both standard slow start

 and CSS. While an arriving ACK may newly acknowledge an arbitrary

 number of bytes, the Hystart++ algorithm limits the number of those

 bytes applied to increase the cwnd to L*SMSS bytes.

 lastRoundMinRTT and currentRoundMinRTT are initialized to infinity at

 the initialization time. currRTT is the RTT sampled from the latest

 incoming ACK and initialized to infinity.

 lastRoundMinRTT = infinity

 currentRoundMinRTT = infinity

 currRTT = infinity

 Hystart++ measures rounds using sequence numbers, as follows: Define

 windowEnd as a sequence number initialized to SND.NXT. When

 windowEnd is ACKed, the current round ends and windowEnd is set to

 SND.NXT.

 At the start of each round during standard slow start ([RFC5681]) and

 CSS, initialize the variables used to compute last round and current

 round’s minimum RTT:

 lastRoundMinRTT = currentRoundMinRTT

 currentRoundMinRTT = infinity

 rttSampleCount = 0

 For each arriving ACK in slow start, where N is the number of

 previously unacknowledged bytes acknowledged in the arriving ACK:

 Update the cwnd:

 cwnd = cwnd + min(N, L * SMSS)

 Keep track of minimum observed RTT:

Balasubramanian, et al. Expires 31 August 2023 [Page 4]

Internet-Draft HyStart++ February 2023

 currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

 rttSampleCount += 1

 For rounds where at least N_RTT_SAMPLE RTT samples have been obtained

 and currentRoundMinRTT and lastRoundMinRTT are valid, check if delay

 increase triggers slow start exit:

 if ((rttSampleCount >= N_RTT_SAMPLE) AND

 (currentRoundMinRTT != infinity) AND

 (lastRoundMinRTT != infinity))

 Compute a RTT Threshold clamped between MIN_RTT_THRESH and MAX_RTT_THRESH

 RttThresh = max(MIN_RTT_THRESH, min(lastRoundMinRTT / MIN_RTT_DIVISOR, MAX_R

TT_THRESH))

 if (currentRoundMinRTT >= (lastRoundMinRTT + RttThresh))

 cssBaselineMinRtt = currentRoundMinRTT

 exit slow start and enter CSS

 For each arriving ACK in CSS, where N is the number of previously

 unacknowledged bytes acknowledged in the arriving ACK:

 Update the cwnd:

 cwnd = cwnd + (min(N, L * SMSS) / CSS_GROWTH_DIVISOR)

 Keep track of minimum observed RTT:

 currentRoundMinRTT = min(currentRoundMinRTT, currRTT)

 rttSampleCount += 1

 For CSS rounds where at least N_RTT_SAMPLE RTT samples have been

 obtained, check if current round’s minRTT drops below baseline

 indicating that HyStart exit was spurious:

 if (currentRoundMinRTT < cssBaselineMinRtt)

 cssBaselineMinRtt = infinity

 resume slow start including HyStart++

 CSS lasts at most CSS_ROUNDS rounds. If the transition into CSS

 happens in the middle of a round, that partial round counts towards

 the limit.

 If CSS_ROUNDS rounds are complete, enter congestion avoidance by

 setting ssthresh to current cwnd.

 ssthresh = cwnd

 If loss or ECN-marking is observed anytime during standard slow start

 or CSS, enter congestion avoidance by setting ssthresh to current

 cwnd.

Balasubramanian, et al. Expires 31 August 2023 [Page 5]

Internet-Draft HyStart++ February 2023

 ssthresh = cwnd

4.3. Tuning constants and other considerations

 It is RECOMMENDED that a HyStart++ implementation use the following

 constants:

 MIN_RTT_THRESH = 4 msec

 MAX_RTT_THRESH = 16 msec

 MIN_RTT_DIVISOR = 8

 N_RTT_SAMPLE = 8

 CSS_GROWTH_DIVISOR = 4

 CSS_ROUNDS = 5

 L = infinity if paced, L = 8 if non-paced

 These constants have been determined with lab measurements and real

 world deployments. An implementation MAY tune them for different

 network characteristics.

 The delay increase sensitivity is determined by MIN_RTT_THRESH and

 MAX_RTT_THRESH. Smaller values of MIN_RTT_THRESH may cause spurious

 exits from slow start. Larger values of MAX_RTT_THRESH may result in

 slow start not exiting until loss is encountered for connections on

 large RTT paths.

 MIN_RTT_DIVISOR is a fraction of RTT to compute delay threshold. A

 smaller value would mean a bigger threshold and thus less sensitive

 to delay increase, and vice versa.

 While all TCP implementations are REQUIRED to take at least one RTT

 sample each round, implementations of HyStart++ are RECOMMENDED to

 take at least N_RTT_SAMPLE RTT samples. Using lower values of

 N_RTT_SAMPLE will lower the accuracy of the measured RTT for the

 round; higher values will improve accuracy at the cost of more

 processing.

 The minimum value of CSS_GROWTH_DIVISOR MUST be at least 2. A value

 of 1 results in the same aggressive behavior as regular slow start.

 Values larger than 4 will cause the algorithm to be less aggressive

 and maybe less performant.

 Smaller values of CSS_ROUNDS may miss detecting jitter and larger

 values may limit performance.

 Packet pacing [ASA00] is a possible mechanism to avoid large bursts

 and their associated harm. A paced TCP implementation SHOULD use L =

 infinity. Burst concerns are mitigated by pacing and this setting

 allows for optimal cwnd growth on modern networks.

Balasubramanian, et al. Expires 31 August 2023 [Page 6]

Internet-Draft HyStart++ February 2023

 For TCP implementations that pace to mitigate burst concerns, L

 values smaller than INFINITY may suffer performance problems due to

 slow cwnd growth in high speed networks. For non-paced TCP

 implementations, L values smaller than 8 may suffer performance

 problems due to slow cwnd growth in high speed networks; L values

 larger than 8 may cause an increase in burstiness and thereby loss

 rates, and result in poor performance.

 An implementation SHOULD use HyStart++ only for the initial slow

 start (when ssthresh is at its initial value of arbitrarily high per

 [RFC5681]) and fall back to using traditional slow start for the

 remainder of the connection lifetime. This is acceptable because

 subsequent slow starts will use the discovered ssthresh value to exit

 slow start and avoid the overshoot problem. An implementation MAY

 use HyStart++ to grow the restart window ([RFC5681]) after a long

 idle period.

 In application limited scenarios, the amount of data in flight could

 fall below the bandwidth-delay product (BDP) and result in smaller

 RTT samples which can trigger an exit back to slow start. It is

 expected that a connection might oscillate between CSS and slow start

 in such scenarios. But this behavior will neither result in a

 connection prematurely entering congestion avoidance nor cause

 overshooting compared to slow start.

5. Deployments and Performance Evaluations

 As of February 2023, HyStart++ as described in this document has been

 default enabled for all TCP connections in the Windows operating

 system for over two years with pacing disabled and an actual L = 8.

 In lab measurements with Windows TCP, HyStart++ shows both goodput

 improvements as well as reductions in packet loss and retransmissions

 compared to traditional slow start. For example, across a variety of

 tests on a 100 Mbps link with a bottleneck buffer size of bandwidth-

 delay product, HyStart++ reduces bytes retransmitted by 50% and

 retransmission timeouts (RTOs) by 36%.

 In an A/B test where we compare HyStart++ draft 01 to traditional

 slow start across a large Windows device population, out of 52

 billion TCP connections, 0.7% of connections move from 1 RTO to 0

 RTOs and another 0.7% connections move from 2 RTOs to 1 RTO with

 HyStart++. This test did not focus on send-heavy connections and the

 impact on send-heavy connections is likely much higher. We plan to

 conduct more such production experiments to gather more data in the

 future.

Balasubramanian, et al. Expires 31 August 2023 [Page 7]

Internet-Draft HyStart++ February 2023

6. Security Considerations

 HyStart++ enhances slow start and inherits the general security

 considerations discussed in [RFC5681].

 An attacker can cause Hystart++ to exit slow start prematurely and

 impair the performance of a TCP connection by, for example, dropping

 data packets or their acknowledgements.

 The ACK division attack outlined in [SCWA99] does not affect

 Hystart++ because the congestion window increase in Hystart++ is

 based on the number of bytes newly acknowledged in each arriving ACK

 rather than by a particular constant on each arriving ACK.

7. IANA Considerations

 This document has no actions for IANA.

8. Acknowledgements

 During the discussions of this work on the TCPM mailing list, in

 working group meetings, helpful comments, critiques, and reviews were

 received from (listed alphabetically by last name): Mark Allman, Bob

 Briscoe, Neal Cardwell, Yuchung Cheng, Junho Choi, Martin Duke, Reese

 Enghardt, Christian Huitema, Ilpo Järvinen, Yoshifumi Nishida,

 Randall Stewart, and Michael Tuexen.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5681] Allman, M., Paxson, V., and E. Blanton, "TCP Congestion

 Control", RFC 5681, DOI 10.17487/RFC5681, September 2009,

 <https://www.rfc-editor.org/info/rfc5681>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

Balasubramanian, et al. Expires 31 August 2023 [Page 8]

Internet-Draft HyStart++ February 2023

 [ASA00] Aggarwal, A., Savage, S., and T. Anderson, "Understanding

 the Performance of TCP Pacing", Proceedings IEEE INFOCOM

 2000, DOI 10.1109/INFCOM.2000.832483, 2000,

 <https://doi.org/10.1109/INFCOM.2000.832483>.

 [HyStart] Ha, S. and I. Ree, "Taming the elephants: New TCP slow

 start", Computer Networks vol. 55, no. 9, pp. 2092-2110,

 DOI 10.1016/j.comnet.2011.01.014, 2011,

 <https://doi.org/10.1016/j.comnet.2011.01.014>.

 [RFC1122] Braden, R., Ed., "Requirements for Internet Hosts -

 Communication Layers", STD 3, RFC 1122,

 DOI 10.17487/RFC1122, October 1989,

 <https://www.rfc-editor.org/info/rfc1122>.

 [RFC1191] Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191,

 DOI 10.17487/RFC1191, November 1990,

 <https://www.rfc-editor.org/info/rfc1191>.

 [RFC4821] Mathis, M. and J. Heffner, "Packetization Layer Path MTU

 Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007,

 <https://www.rfc-editor.org/info/rfc4821>.

 [RFC9002] Iyengar, J., Ed. and I. Swett, Ed., "QUIC Loss Detection

 and Congestion Control", RFC 9002, DOI 10.17487/RFC9002,

 May 2021, <https://www.rfc-editor.org/info/rfc9002>.

 [RFC9260] Stewart, R., Tüxen, M., and K. Nielsen, "Stream Control

 Transmission Protocol", RFC 9260, DOI 10.17487/RFC9260,

 June 2022, <https://www.rfc-editor.org/info/rfc9260>.

 [SCWA99] Savage, S., Cardwell, N., Wetherall, D., and T. Anderson,

 "TCP congestion control with a misbehaving receiver", ACM

 Computer Communication Review, 29(5),

 DOI 10.1145/505696.505704, 1999,

 <https://doi.org/10.1145/505696.505704>.

Authors’ Addresses

 Praveen Balasubramanian

 Confluent

 899 West Evelyn Ave

 Mountain View, CA 94041

 United States of America

 Email: pravb.ietf@gmail.com

Balasubramanian, et al. Expires 31 August 2023 [Page 9]

Internet-Draft HyStart++ February 2023

 Yi Huang

 Microsoft

 One Microsoft Way

 Redmond, WA 94052

 United States of America

 Phone: +1 425 703 0447

 Email: huanyi@microsoft.com

 Matt Olson

 Microsoft

 Phone: +1 425 538 8598

 Email: maolson@microsoft.com

Balasubramanian, et al. Expires 31 August 2023 [Page 10]

