
Network Working Group R. Barnes
Internet-Draft Cisco
Intended status: Standards Track S. Iyengar
Expires: 28 December 2020 Facebook
 N. Sullivan
 Cloudflare
 E. Rescorla
 Mozilla
 26 June 2020

 Delegated Credentials for TLS
 draft-ietf-tls-subcerts-09

Abstract

 The organizational separation between the operator of a TLS endpoint
 and the certification authority can create limitations. For example,
 the lifetime of certificates, how they may be used, and the
 algorithms they support are ultimately determined by the
 certification authority. This document describes a mechanism by
 which operators may delegate their own credentials for use in TLS,
 without breaking compatibility with peers that do not support this
 specification.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/tlswg/tls-subcerts (https://github.com/tlswg/tls-
 subcerts).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Barnes, et al. Expires 28 December 2020 [Page 1]

Internet-Draft Delegated Credentials for TLS June 2020

 This Internet-Draft will expire on 28 December 2020.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Terminology 3
 2.1. Change Log . 4
 3. Solution Overview . 5
 3.1. Rationale . 6
 3.2. Related Work . 7
 4. Delegated Credentials . 8
 4.1. Client and Server Behavior 9
 4.1.1. Server Authentication 9
 4.1.2. Client Authentication 10
 4.1.3. Validating a Delegated Credential 11
 4.2. Certificate Requirements 11
 5. Operational Considerations 12
 5.1. Client Clock Skew . 12
 6. IANA Considerations . 12
 7. Security Considerations 13
 7.1. Security of Delegated Credential’s Private Key 13
 7.2. Re-use of Delegated Credentials in Multiple
 Contexts . 13
 7.3. Revocation of Delegated Credentials 13
 7.4. Interactions with Session Resumption 13
 7.5. Privacy Considerations 14
 7.6. The Impact of Signature Forgery Attacks 14
 8. Acknowledgements . 15
 9. References . 15
 9.1. Normative References 15
 9.2. Informative References 15
 Appendix A. ASN.1 Module . 16
 Authors’ Addresses . 17

Barnes, et al. Expires 28 December 2020 [Page 2]

Internet-Draft Delegated Credentials for TLS June 2020

1. Introduction

 Typically, a TLS server uses a certificate provided by some entity
 other than the operator of the server (a "Certification Authority" or
 CA) [RFC8446] [RFC5280]. This organizational separation makes the
 TLS server operator dependent on the CA for some aspects of its
 operations, for example:

 * Whenever the server operator wants to deploy a new certificate, it
 has to interact with the CA.

 * The server operator can only use TLS signature schemes for which
 the CA will issue credentials.

 These dependencies cause problems in practice. Server operators
 often deploy TLS termination services in locations such as remote
 data centers or Content Delivery Networks (CDNs) where it may be
 difficult to detect key compromises. Short-lived certificates may be
 used to limit the exposure of keys in these cases.

 However, short-lived certificates need to be renewed more frequently
 than long-lived certificates. If an external CA is unable to issue a
 certificate in time to replace a deployed certificate, the server
 would no longer be able to present a valid certificate to clients.
 With short-lived certificates, there is a smaller window of time to
 renew a certificates and therefore a higher risk that an outage at a
 CA will negatively affect the uptime of the service.

 To reduce the dependency on external CAs, this document proposes a
 limited delegation mechanism that allows a TLS peer to issue its own
 credentials within the scope of a certificate issued by an external
 CA. These credentials only enable the recipient of the delegation to
 speak for names that the CA has authorized. For clarity, we will
 refer to the certificate issued by the CA as a "certificate", or
 "delegation certificate", and the one issued by the operator as a
 "delegated credential" or "DC".

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Barnes, et al. Expires 28 December 2020 [Page 3]

Internet-Draft Delegated Credentials for TLS June 2020

2.1. Change Log

 (*) indicates changes to the wire protocol.

 draft-09

 * Address case nits

 * Fix section bullets in 4.1.3.

 * Add operational considerations section for clock skew

 * Add text around using an oracle to forge DCs in the future and
 past

 * Add text about certificate extension vs EKU

 draft-08

 * Include details about the impact of signature forgery attacks

 * Copy edits

 * Fix section about DC reuse

 * Incorporate feedback from Jonathan Hammell and Kevin Jacobs on the
 list

 draft-07

 * Minor text improvements

 draft-06

 * Modified IANA section, fixed nits

 draft-05

 * Removed support for PKCS 1.5 RSA signature algorithms.

 * Additional security considerations.

 draft-04

 * Add support for client certificates.

 draft-03

Barnes, et al. Expires 28 December 2020 [Page 4]

Internet-Draft Delegated Credentials for TLS June 2020

 * Remove protocol version from the Credential structure. (*)

 draft-02

 * Change public key type. (*)

 * Change DelegationUsage extension to be NULL and define its object
 identifier.

 * Drop support for TLS 1.2.

 * Add the protocol version and credential signature algorithm to the
 Credential structure. (*)

 * Specify undefined behavior in a few cases: when the client
 receives a DC without indicated support; when the client indicates
 the extension in an invalid protocol version; and when DCs are
 sent as extensions to certificates other than the end-entity
 certificate.

3. Solution Overview

 A delegated credential is a digitally signed data structure with two
 semantic fields: a validity interval and a public key (along with its
 associated signature algorithm). The signature on the credential
 indicates a delegation from the certificate that is issued to the
 peer. The private key used to sign a credential corresponds to the
 public key of the peer’s X.509 end-entity certificate [RFC5280].

 A TLS handshake that uses delegated credentials differs from a
 standard handshake in a few important ways:

 * The initiating peer provides an extension in its ClientHello or
 CertificateRequest that indicates support for this mechanism.

 * The peer sending the Certificate message provides both the
 certificate chain terminating in its certificate as well as the
 delegated credential.

 * The authenticating initiator uses information from the peer’s
 certificate to verify the delegated credential and that the peer
 is asserting an expected identity.

 * Peers accepting the delegated credential use it as the certificate
 key for the TLS handshake

 As detailed in Section 4, the delegated credential is
 cryptographically bound to the end-entity certificate with which the

Barnes, et al. Expires 28 December 2020 [Page 5]

Internet-Draft Delegated Credentials for TLS June 2020

 credential may be used. This document specifies the use of delegated
 credentials in TLS 1.3 or later; their use in prior versions of the
 protocol is not allowed.

 Delegated credentials allow a peer to terminate TLS connections on
 behalf of the certificate owner. If a credential is stolen, there is
 no mechanism for revoking it without revoking the certificate itself.
 To limit exposure in case of delegated credential private key
 compromise, delegated credentials have a maximum validity period. In
 the absence of an application profile standard specifying otherwise,
 the maximum validity period is set to 7 days. Peers MUST NOT issue
 credentials with a validity period longer than the maximum validity
 period. This mechanism is described in detail in Section 4.1.

 It was noted in [XPROT] that certificates in use by servers that
 support outdated protocols such as SSLv2 can be used to forge
 signatures for certificates that contain the keyEncipherment KeyUsage
 ([RFC5280] section 4.2.1.3). In order to prevent this type of cross-
 protocol attack, we define a new DelegationUsage extension to X.509
 that permits use of delegated credentials. (See Section 4.2.)

3.1. Rationale

 Delegated credentials present a better alternative than other
 delegation mechanisms like proxy certificates [RFC3820] for several
 reasons:

 * There is no change needed to certificate validation at the PKI
 layer.

 * X.509 semantics are very rich. This can cause unintended
 consequences if a service owner creates a proxy certificate where
 the properties differ from the leaf certificate. For this reason,
 delegated credentials have very restricted semantics that should
 not conflict with X.509 semantics.

 * Proxy certificates rely on the certificate path building process
 to establish a binding between the proxy certificate and the
 server certificate. Since the certificate path building process
 is not cryptographically protected, it is possible that a proxy
 certificate could be bound to another certificate with the same
 public key, with different X.509 parameters. Delegated
 credentials, which rely on a cryptographic binding between the
 entire certificate and the delegated credential, cannot.

 * Each delegated credential is bound to a specific signature
 algorithm that may be used to sign the TLS handshake ([RFC8446]

Barnes, et al. Expires 28 December 2020 [Page 6]

Internet-Draft Delegated Credentials for TLS June 2020

 section 4.2.3). This prevents them from being used with other,
 perhaps unintended signature algorithms.

3.2. Related Work

 Many of the use cases for delegated credentials can also be addressed
 using purely server-side mechanisms that do not require changes to
 client behavior (e.g., a PKCS#11 interface or a remote signing
 mechanism [KEYLESS]). These mechanisms, however, incur per-
 transaction latency, since the front-end server has to interact with
 a back-end server that holds a private key. The mechanism proposed
 in this document allows the delegation to be done off-line, with no
 per-transaction latency. The figure below compares the message flows
 for these two mechanisms with TLS 1.3 [RFC8446].

 Remote key signing:

 Client Front-End Back-End
 |----ClientHello--->| |
 |<---ServerHello----| |
 |<---Certificate----| |
 | |<---remote sign---->|
 |<---CertVerify-----| |
 | ... | |

 Delegated credentials:

 Client Front-End Back-End
 | |<--DC distribution->|
 |----ClientHello--->| |
 |<---ServerHello----| |
 |<---Certificate----| |
 |<---CertVerify-----| |
 | ... | |

 These two mechanisms can be complementary. A server could use
 credentials for clients that support them, while using [KEYLESS] to
 support legacy clients. The private key for a delegated credential
 can be used in place of a certificate private key, so it is important
 that the Front-End and Back-End are parties that have a trusted
 relationship.

 Use of short-lived certificates with automated certificate issuance,
 e.g., with Automated Certificate Managment Environment (ACME)
 [RFC8555], reduces the risk of key compromise, but has several
 limitations. Specifically, it introduces an operationally-critical
 dependency on an external party. It also limits the types of

Barnes, et al. Expires 28 December 2020 [Page 7]

Internet-Draft Delegated Credentials for TLS June 2020

 algorithms supported for TLS authentication to those the CA is
 willing to issue a certificate for. Nonetheless, existing automated
 issuance APIs like ACME may be useful for provisioning delegated
 credentials.

4. Delegated Credentials

 While X.509 forbids end-entity certificates from being used as
 issuers for other certificates, it is valid to use them to issue
 other signed objects as long as the certificate contains the
 digitalSignature KeyUsage ([RFC5280] section 4.2.1.3). We define a
 new signed object format that would encode only the semantics that
 are needed for this application. The credential has the following
 structure:

 struct {
 uint32 valid_time;
 SignatureScheme expected_cert_verify_algorithm;
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
 } Credential;

 valid_time: Time in seconds relative to the beginning of the
 delegation certificate’s notBefore value after which the delegated
 credential is no longer valid. This MUST NOT exceed 7 days.

 expected_cert_verify_algorithm: The signature algorithm of the
 credential key pair, where the type SignatureScheme is as defined
 in [RFC8446]. This is expected to be the same as
 CertificateVerify.algorithm sent by the server. Only signature
 algorithms allowed for use in CertificateVerify messages are
 allowed. When using RSA, the public key MUST NOT use the
 rsaEncryption OID, as a result, the following algorithms are not
 allowed for use with delegated credentials: rsa_pss_rsae_sha256,
 rsa_pss_rsae_sha384, rsa_pss_rsae_sha512.

 ASN1_subjectPublicKeyInfo: The credential’s public key, a DER-
 encoded [X.690] SubjectPublicKeyInfo as defined in [RFC5280].

 The delegated credential has the following structure:

 struct {
 Credential cred;
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } DelegatedCredential;

 algorithm: The signature algorithm used to verify
 DelegatedCredential.signature.

Barnes, et al. Expires 28 December 2020 [Page 8]

Internet-Draft Delegated Credentials for TLS June 2020

 signature: The delegation, a signature that binds the credential to
 the end-entity certificate’s public key as specified below. The
 signature scheme is specified by DelegatedCredential.algorithm.

 The signature of the DelegatedCredential is computed over the
 concatenation of:

 1. A string that consists of octet 32 (0x20) repeated 64 times.

 2. The context string "TLS, server delegated credentials" for
 servers and "TLS, client delegated credentials" for clients.

 3. A single 0 byte, which serves as the separator.

 4. The DER-encoded X.509 end-entity certificate used to sign the
 DelegatedCredential.

 5. DelegatedCredential.cred.

 6. DelegatedCredential.algorithm.

 The signature effectively binds the credential to the parameters of
 the handshake in which it is used. In particular, it ensures that
 credentials are only used with the certificate and signature
 algorithm chosen by the delegator.

 The code changes required in order to create and verify delegated
 credentials, and the implementation complexity this entails, are
 localized to the TLS stack. This has the advantage of avoiding
 changes to security-critical and often delicate PKI code.

4.1. Client and Server Behavior

 This document defines the following TLS extension code point.

 enum {
 ...
 delegated_credential(34),
 (65535)
 } ExtensionType;

4.1.1. Server Authentication

 A client which supports this specification SHALL send a
 "delegated_credential" extension in its ClientHello. The body of the
 extension consists of a SignatureSchemeList:

Barnes, et al. Expires 28 December 2020 [Page 9]

Internet-Draft Delegated Credentials for TLS June 2020

 struct {
 SignatureScheme supported_signature_algorithm<2..2^16-2>;
 } SignatureSchemeList;

 If the client receives a delegated credential without indicating
 support, then the client MUST abort with an "unexpected_message"
 alert.

 If the extension is present, the server MAY send a delegated
 credential; if the extension is not present, the server MUST NOT send
 a delegated credential. The server MUST ignore the extension unless
 TLS 1.3 or a later version is negotiated.

 The server MUST send the delegated credential as an extension in the
 CertificateEntry of its end-entity certificate; the client SHOULD
 ignore delegated credentials sent as extensions to any other
 certificate.

 The expected_cert_verify_algorithm field MUST be of a type advertised
 by the client in the SignatureSchemeList and is considered invalid
 otherwise. Clients that receive invalid delegated credentials MUST
 terminate the connection with an "illegal_parameter" alert.

4.1.2. Client Authentication

 A server that supports this specification SHALL send a
 "delegated_credential" extension in the CertificateRequest message
 when requesting client authentication. The body of the extension
 consists of a SignatureSchemeList. If the server receives a
 delegated credential without indicating support in its
 CertificateRequest, then the server MUST abort with an
 "unexpected_message" alert.

 If the extension is present, the client MAY send a delegated
 credential; if the extension is not present, the client MUST NOT send
 a delegated credential. The client MUST ignore the extension unless
 TLS 1.3 or a later version is negotiated.

 The client MUST send the delegated credential as an extension in the
 CertificateEntry of its end-entity certificate; the server SHOULD
 ignore delegated credentials sent as extensions to any other
 certificate.

 The algorithm field MUST be of a type advertised by the server in the
 "signature_algorithms" extension of the CertificateRequest message
 and the expected_cert_verify_algorithm field MUST be of a type
 advertised by the server in the SignatureSchemeList and considered
 invalid otherwise. Servers that receive invalid delegated

Barnes, et al. Expires 28 December 2020 [Page 10]

Internet-Draft Delegated Credentials for TLS June 2020

 credentials MUST terminate the connection with an "illegal_parameter"
 alert.

4.1.3. Validating a Delegated Credential

 On receiving a delegated credential and a certificate chain, the peer
 validates the certificate chain and matches the end-entity
 certificate to the peer’s expected identity. It also takes the
 following steps:

 1. Verify that the current time is within the validity interval of
 the credential. This is done by asserting that the current time
 is no more than the delegation certificate’s notBefore value plus
 DelegatedCredential.cred.valid_time.

 2. Verify that the credential’s remaining validity time is no more
 than the maximum validity period. This is done by asserting that
 the current time is no more than the delegation certificate’s
 notBefore value plus DelegatedCredential.cred.valid_time plus the
 maximum validity period.

 3. Verify that expected_cert_verify_algorithm matches the scheme
 indicated in the peer’s CertificateVerify message and that the
 algorithm is allowed for use with delegated credentials.

 4. Verify that the end-entity certificate satisfies the conditions
 in Section 4.2.

 5. Use the public key in the peer’s end-entity certificate to verify
 the signature of the credential using the algorithm indicated by
 DelegatedCredential.algorithm.

 If one or more of these checks fail, then the delegated credential is
 deemed invalid. Clients and servers that receive invalid delegated
 credentials MUST terminate the connection with an "illegal_parameter"
 alert. If successful, the participant receiving the Certificate
 message uses the public key in the credential to verify the signature
 in the peer’s CertificateVerify message.

4.2. Certificate Requirements

 We define a new X.509 extension, DelegationUsage, to be used in the
 certificate when the certificate permits the usage of delegated
 credentials. What follows is the ASN.1 [X.680] for the
 DelegationUsage certificate extension.

Barnes, et al. Expires 28 December 2020 [Page 11]

Internet-Draft Delegated Credentials for TLS June 2020

 ext-delegationUsage EXTENSION ::= {
 SYNTAX DelegationUsage IDENTIFIED BY id-ce-delegationUsage
 }

 DelegationUsage ::= NULL

 id-ce-delegationUsage OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 private(4) enterprise(1) id-cloudflare(44363) 44 }

 The extension MUST be marked non-critical. (See Section 4.2 of
 [RFC5280].) The client MUST NOT accept a delegated credential unless
 the server’s end-entity certificate satisfies the following criteria:

 * It has the DelegationUsage extension.

 * It has the digitalSignature KeyUsage (see the KeyUsage extension
 defined in [RFC5280]).

 A new extension was chosen instead of adding a new Extended Key Usage
 (EKU) to be compatible with deployed TLS and PKI software stacks
 without requiring CAs to issue new intermediate certificates.

5. Operational Considerations

5.1. Client Clock Skew

 One of the risks of deploying a short-lived credential system based
 on absolute time is client clock skew. If a client’s clock is
 sufficiently ahead or behind of the server’s clock, then clients will
 reject credentials that are valid from the server’s perspective.
 Clock skew also affects the validity of the original certificates.
 The lifetime of the delegated credential should be set taking clock
 skew into account. Clock skew may affect a delegated credential at
 the beginning and end of its validity periods, which should also be
 taken into account.

6. IANA Considerations

 This document registers the "delegated_credentials" extension in the
 "TLS ExtensionType Values" registry. The "delegated_credentials"
 extension has been assigned a code point of 34. The IANA registry
 lists this extension as "Recommended" (i.e., "Y") and indicates that
 it may appear in the ClientHello (CH), CertificateRequest (CR), or
 Certificate (CT) messages in TLS 1.3 [RFC8446].

 This document also defines an ASN.1 module for the DelegationUsage
 certificate extension in Appendix A. IANA is requested to register

Barnes, et al. Expires 28 December 2020 [Page 12]

Internet-Draft Delegated Credentials for TLS June 2020

 an Object Identfier (OID) for the ASN.1 in "SMI Security for PKIX
 Module Identifier" arc. An OID for the DelegationUsage certificate
 extension is not needed as it is already assigned to the extension
 from Cloudflare’s IANA Private Enterprise Number (PEN) arc.

7. Security Considerations

7.1. Security of Delegated Credential’s Private Key

 Delegated credentials limit the exposure of the private key used in a
 TLS connection by limiting its validity period. An attacker who
 compromises the private key of a delegated credential can act as a
 man-in-the-middle until the delegated credential expires. However,
 they cannot create new delegated credentials. Thus, delegated
 credentials should not be used to send a delegation to an untrusted
 party, but is meant to be used between parties that have some trust
 relationship with each other. The secrecy of the delegated
 credential’s private key is thus important and access control
 mechanisms SHOULD be used to protect it, including file system
 controls, physical security, or hardware security modules.

7.2. Re-use of Delegated Credentials in Multiple Contexts

 It is not possible to use the same delegated credential for both
 client and server authentication because issuing parties compute the
 corresponding signature using a context string unique to the intended
 role (client or server).

7.3. Revocation of Delegated Credentials

 Delegated credentials do not provide any additional form of early
 revocation. Since it is short lived, the expiry of the delegated
 credential would revoke the credential. Revocation of the long term
 private key that signs the delegated credential also implicitly
 revokes the delegated credential.

7.4. Interactions with Session Resumption

 If a client decides to cache the certificate chain and re-validate it
 when resuming a connection, the client SHOULD also cache the
 associated delegated credential and re-validate it.

Barnes, et al. Expires 28 December 2020 [Page 13]

Internet-Draft Delegated Credentials for TLS June 2020

7.5. Privacy Considerations

 Delegated credentials can be valid for 7 days and it is much easier
 for a service to create delegated credential than a certificate
 signed by a CA. A service could determine the client time and clock
 skew by creating several delegated credentials with different expiry
 timestamps and observing whether the client would accept it. Client
 time could be unique and thus privacy sensitive clients, such as
 browsers in incognito mode, who do not trust the service might not
 want to advertise support for delegated credentials or limit the
 number of probes that a server can perform.

7.6. The Impact of Signature Forgery Attacks

 When TLS 1.2 servers support RSA key exchange, they may be vulnerable
 to attacks that allow forging an RSA signature over an arbitrary
 message [BLEI]. TLS 1.2 [RFC5246] (Section 7.4.7.1.) describes a
 mitigation strategy requiring careful implementation of timing
 resistant countermeasures for preventing these attacks. Experience
 shows that in practice, server implementations may fail to fully stop
 these attacks due to the complexity of this mitigation [ROBOT]. For
 TLS 1.2 servers that support RSA key exchange using a DC-enabled end-
 entity certificate, a hypothetical signature forgery attack would
 allow forging a signature over a delegated credential. The forged
 credential could then be used by the attacker as the equivalent of a
 man-in-the-middle certificate, valid for 7 days.

 Server operators should therefore minimize the risk of using DC-
 enabled end-entity certificates where a signature forgery oracle may
 be present. If possible, server operators may choose to use DC-
 enabled certificates only for signing credentials, and not for
 serving non-DC TLS traffic. Furthermore, server operators may use
 elliptic curve certificates for DC-enabled traffic, while using RSA
 certificates without the DelegationUsage certificate extension for
 non-DC traffic; this completely prevents such attacks.

 Note that if a signature can be forged over an arbitrary credential,
 the attacker can choose any value for the valid_time field. Repeated
 signature forgeries therefore allow the attacker to create multiple
 delegated credentials that can cover the entire validity period of
 the certificate. Temporary exposure of the key or a signing oracle
 may allow the attacker to impersonate a server for the lifetime of
 the certificate.

Barnes, et al. Expires 28 December 2020 [Page 14]

Internet-Draft Delegated Credentials for TLS June 2020

8. Acknowledgements

 Thanks to David Benjamin, Christopher Patton, Kyle Nekritz, Anirudh
 Ramachandran, Benjamin Kaduk, Kazuho Oku, Daniel Kahn Gillmor, Watson
 Ladd, Robert Merget, Juraj Somorovsky, Nimrod Aviram for their
 discussions, ideas, and bugs they have found.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

 [X.680] ITU-T, "Information technology - Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ISO/
 IEC 8824-1:2015, November 2015.

 [X.690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2015, November 2015.

9.2. Informative References

 [BLEI] Bleichenbacher, D., "Chosen Ciphertext Attacks against
 Protocols Based on RSA Encryption Standard PKCS #1",
 Advances in Cryptology -- CRYPTO’98, LNCS vol. 1462,
 pages: 1-12 , 1998.

 [KEYLESS] Sullivan, N. and D. Stebila, "An Analysis of TLS Handshake
 Proxying", IEEE Trustcom/BigDataSE/ISPA 2015 , 2015.

Barnes, et al. Expires 28 December 2020 [Page 15]

Internet-Draft Delegated Credentials for TLS June 2020

 [RFC3820] Tuecke, S., Welch, V., Engert, D., Pearlman, L., and M.
 Thompson, "Internet X.509 Public Key Infrastructure (PKI)
 Proxy Certificate Profile", RFC 3820,
 DOI 10.17487/RFC3820, June 2004,
 <https://www.rfc-editor.org/info/rfc3820>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 DOI 10.17487/RFC5912, June 2010,
 <https://www.rfc-editor.org/info/rfc5912>.

 [RFC8555] Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/info/rfc8555>.

 [ROBOT] Boeck, H., Somorovsky, J., and C. Young, "Return Of
 Bleichenbacher’s Oracle Threat (ROBOT)", 27th USENIX
 Security Symposium , 2018.

 [XPROT] Jager, T., Schwenk, J., and J. Somorovsky, "On the
 Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1
 v1.5 Encryption", Proceedings of the 22nd ACM SIGSAC
 Conference on Computer and Communications Security , 2015.

Appendix A. ASN.1 Module

 The following ASN.1 module provides the complete definition of the
 DelegationUsage certificate extension. The ASN.1 module makes
 imports from [RFC5912].

Barnes, et al. Expires 28 December 2020 [Page 16]

Internet-Draft Delegated Credentials for TLS June 2020

 DelegatedCredentialExtn
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-delegated-credential-extn(TBD) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORT ALL

 IMPORTS

 EXTENSION
 FROM PKIX-CommonTypes-2009 -- From RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) } ;

 -- OID

 id-cloudflare OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) private(4)
 enterprise(1) 44363 }

 -- EXTENSION

 ext-delegationUsage EXTENSION ::=
 { SYNTAX DelegationUsage
 IDENTIFIED BY id-ce-delegationUsage }

 id-ce-delegationUsage OBJECT IDENTIFIER ::= { id-cloudflare 44 }

 DelegationUsage ::= NULL

 END

Authors’ Addresses

 Richard Barnes
 Cisco

 Email: rlb@ipv.sx

 Subodh Iyengar
 Facebook

 Email: subodh@fb.com

Barnes, et al. Expires 28 December 2020 [Page 17]

Internet-Draft Delegated Credentials for TLS June 2020

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

Barnes, et al. Expires 28 December 2020 [Page 18]

Network Working Group R. Barnes
Internet-Draft Cisco
Intended status: Standards Track S. Iyengar
Expires: 28 July 2021 Facebook
 N. Sullivan
 Cloudflare
 E. Rescorla
 Mozilla
 24 January 2021

 Delegated Credentials for TLS
 draft-ietf-tls-subcerts-10

Abstract

 The organizational separation between the operator of a TLS endpoint
 and the certification authority can create limitations. For example,
 the lifetime of certificates, how they may be used, and the
 algorithms they support are ultimately determined by the
 certification authority. This document describes a mechanism by
 which operators may delegate their own credentials for use in TLS,
 without breaking compatibility with peers that do not support this
 specification.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Source for this draft and an issue tracker can be found at
 https://github.com/tlswg/tls-subcerts (https://github.com/tlswg/tls-
 subcerts).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

Barnes, et al. Expires 28 July 2021 [Page 1]

Internet-Draft Delegated Credentials for TLS January 2021

 This Internet-Draft will expire on 28 July 2021.

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 3
 2. Conventions and Terminology 3
 2.1. Change Log . 4
 3. Solution Overview . 5
 3.1. Rationale . 6
 3.2. Related Work . 7
 4. Delegated Credentials . 8
 4.1. Client and Server Behavior 10
 4.1.1. Server Authentication 10
 4.1.2. Client Authentication 10
 4.1.3. Validating a Delegated Credential 11
 4.2. Certificate Requirements 12
 5. Operational Considerations 12
 5.1. Client Clock Skew . 13
 6. IANA Considerations . 13
 7. Security Considerations 13
 7.1. Security of Delegated Credential’s Private Key 13
 7.2. Re-use of Delegated Credentials in Multiple
 Contexts . 14
 7.3. Revocation of Delegated Credentials 14
 7.4. Interactions with Session Resumption 14
 7.5. Privacy Considerations 14
 7.6. The Impact of Signature Forgery Attacks 14
 8. Acknowledgements . 15
 9. References . 15
 9.1. Normative References 15
 9.2. Informative References 16
 Appendix A. ASN.1 Module . 17
 Appendix B. Example Certificate 18
 Authors’ Addresses . 18

Barnes, et al. Expires 28 July 2021 [Page 2]

Internet-Draft Delegated Credentials for TLS January 2021

1. Introduction

 Typically, a TLS server uses a certificate provided by some entity
 other than the operator of the server (a "Certification Authority" or
 CA) [RFC8446] [RFC5280]. This organizational separation makes the
 TLS server operator dependent on the CA for some aspects of its
 operations, for example:

 * Whenever the server operator wants to deploy a new certificate, it
 has to interact with the CA.

 * The server operator can only use TLS signature schemes for which
 the CA will issue credentials.

 These dependencies cause problems in practice. Server operators
 often deploy TLS termination services in locations such as remote
 data centers or Content Delivery Networks (CDNs) where it may be
 difficult to detect key compromises. Short-lived certificates may be
 used to limit the exposure of keys in these cases.

 However, short-lived certificates need to be renewed more frequently
 than long-lived certificates. If an external CA is unable to issue a
 certificate in time to replace a deployed certificate, the server
 would no longer be able to present a valid certificate to clients.
 With short-lived certificates, there is a smaller window of time to
 renew a certificates and therefore a higher risk that an outage at a
 CA will negatively affect the uptime of the service.

 To reduce the dependency on external CAs, this document proposes a
 limited delegation mechanism that allows a TLS peer to issue its own
 credentials within the scope of a certificate issued by an external
 CA. These credentials only enable the recipient of the delegation to
 speak for names that the CA has authorized. Furthermore, this
 mechanism allows the server to use modern signature algorithms such
 as Ed25519 [RFC8032] even if their CA does not support them.

 We will refer to the certificate issued by the CA as a "certificate",
 or "delegation certificate", and the one issued by the operator as a
 "delegated credential" or "DC".

2. Conventions and Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

Barnes, et al. Expires 28 July 2021 [Page 3]

Internet-Draft Delegated Credentials for TLS January 2021

2.1. Change Log

 RFC EDITOR PLEASE DELETE THIS SECTION.

 (*) indicates changes to the wire protocol.

 draft-10 * Address superficial comments * Add example certificate

 draft-09

 * Address case nits

 * Fix section bullets in 4.1.3.

 * Add operational considerations section for clock skew

 * Add text around using an oracle to forge DCs in the future and
 past

 * Add text about certificate extension vs EKU

 draft-08

 * Include details about the impact of signature forgery attacks

 * Copy edits

 * Fix section about DC reuse

 * Incorporate feedback from Jonathan Hammell and Kevin Jacobs on the
 list

 draft-07

 * Minor text improvements

 draft-06

 * Modified IANA section, fixed nits

 draft-05

 * Removed support for PKCS 1.5 RSA signature algorithms.

 * Additional security considerations.

 draft-04

Barnes, et al. Expires 28 July 2021 [Page 4]

Internet-Draft Delegated Credentials for TLS January 2021

 * Add support for client certificates.

 draft-03

 * Remove protocol version from the Credential structure. (*)

 draft-02

 * Change public key type. (*)

 * Change DelegationUsage extension to be NULL and define its object
 identifier.

 * Drop support for TLS 1.2.

 * Add the protocol version and credential signature algorithm to the
 Credential structure. (*)

 * Specify undefined behavior in a few cases: when the client
 receives a DC without indicated support; when the client indicates
 the extension in an invalid protocol version; and when DCs are
 sent as extensions to certificates other than the end-entity
 certificate.

3. Solution Overview

 A delegated credential (DC) is a digitally signed data structure with
 two semantic fields: a validity interval and a public key (along with
 its associated signature algorithm). The signature on the delegated
 credential indicates a delegation from the certificate that is issued
 to the peer. The private key used to sign a credential corresponds
 to the public key of the peer’s X.509 end-entity certificate
 [RFC5280].

 A TLS handshake that uses delegated credentials differs from a
 standard handshake in a few important ways:

 * The initiating peer provides an extension in its ClientHello or
 CertificateRequest that indicates support for this mechanism.

 * The peer sending the Certificate message provides both the
 certificate chain terminating in its certificate as well as the
 delegated credential.

 * The authenticating initiator uses information from the peer’s
 certificate to verify the delegated credential and that the peer
 is asserting an expected identity.

Barnes, et al. Expires 28 July 2021 [Page 5]

Internet-Draft Delegated Credentials for TLS January 2021

 * Peers accepting the delegated credential use it as the certificate
 key for the TLS handshake

 As detailed in Section 4, the delegated credential is
 cryptographically bound to the end-entity certificate with which the
 credential may be used. This document specifies the use of delegated
 credentials in TLS 1.3 or later; their use in prior versions of the
 protocol is not allowed.

 Delegated credentials allow a peer to terminate TLS connections on
 behalf of the certificate owner. If a credential is stolen, there is
 no mechanism for revoking it without revoking the certificate itself.
 To limit exposure in case of the compromise of a delegated
 credential’s private key, delegated credentials have a maximum
 validity period. In the absence of an application profile standard
 specifying otherwise, the maximum validity period is set to 7 days.
 Peers MUST NOT issue credentials with a validity period longer than
 the maximum validity period. This mechanism is described in detail
 in Section 4.1.

 It was noted in [XPROT] that certificates in use by servers that
 support outdated protocols such as SSLv2 can be used to forge
 signatures for certificates that contain the keyEncipherment KeyUsage
 ([RFC5280] section 4.2.1.3). In order to prevent this type of cross-
 protocol attack, we define a new DelegationUsage extension to X.509
 that permits use of delegated credentials. (See Section 4.2.)

3.1. Rationale

 Delegated credentials present a better alternative than other
 delegation mechanisms like proxy certificates [RFC3820] for several
 reasons:

 * There is no change needed to certificate validation at the PKI
 layer.

 * X.509 semantics are very rich. This can cause unintended
 consequences if a service owner creates a proxy certificate where
 the properties differ from the leaf certificate. For this reason,
 delegated credentials have very restricted semantics that should
 not conflict with X.509 semantics.

 * Proxy certificates rely on the certificate path building process
 to establish a binding between the proxy certificate and the
 server certificate. Since the certificate path building process
 is not cryptographically protected, it is possible that a proxy
 certificate could be bound to another certificate with the same
 public key, with different X.509 parameters. Delegated

Barnes, et al. Expires 28 July 2021 [Page 6]

Internet-Draft Delegated Credentials for TLS January 2021

 credentials, which rely on a cryptographic binding between the
 entire certificate and the delegated credential, cannot.

 * Each delegated credential is bound to a specific signature
 algorithm for use use in the TLS handshake ([RFC8446] section
 4.2.3). This prevents them from being used with other, perhaps
 unintended signature algorithms.

3.2. Related Work

 Many of the use cases for delegated credentials can also be addressed
 using purely server-side mechanisms that do not require changes to
 client behavior (e.g., a PKCS#11 interface or a remote signing
 mechanism [KEYLESS]). These mechanisms, however, incur per-
 transaction latency, since the front-end server has to interact with
 a back-end server that holds a private key. The mechanism proposed
 in this document allows the delegation to be done off-line, with no
 per-transaction latency. The figure below compares the message flows
 for these two mechanisms with TLS 1.3 [RFC8446].

 Remote key signing:

 Client Front-End Back-End
 |----ClientHello--->| |
 |<---ServerHello----| |
 |<---Certificate----| |
 | |<---remote sign---->|
 |<---CertVerify-----| |
 | ... | |

 Delegated Credential:

 Client Front-End Back-End
 | |<--DC distribution->|
 |----ClientHello--->| |
 |<---ServerHello----| |
 |<---Certificate----| |
 |<---CertVerify-----| |
 | ... | |

 These two mechanisms can be complementary. A server could use
 delegated credentials for clients that support them, while using
 [KEYLESS] to support legacy clients. The private key for a delegated
 credential can be used in place of a certificate private key, so it
 is important that the Front-End and Back-End are parties with a
 trusted relationship.

Barnes, et al. Expires 28 July 2021 [Page 7]

Internet-Draft Delegated Credentials for TLS January 2021

 Use of short-lived certificates with automated certificate issuance,
 e.g., with Automated Certificate Management Environment (ACME)
 [RFC8555], reduces the risk of key compromise, but has several
 limitations. Specifically, it introduces an operationally-critical
 dependency on an external party (the CA). It also limits the types
 of algorithms supported for TLS authentication to those the CA is
 willing to issue a certificate for. Nonetheless, existing automated
 issuance APIs like ACME may be useful for provisioning delegated
 credentials.

4. Delegated Credentials

 While X.509 forbids end-entity certificates from being used as
 issuers for other certificates, it is valid to use them to issue
 other signed objects as long as the certificate contains the
 digitalSignature KeyUsage ([RFC5280] section 4.2.1.3). We define a
 new signed object format that would encode only the semantics that
 are needed for this application. The Credential has the following
 structure:

 struct {
 uint32 valid_time;
 SignatureScheme expected_cert_verify_algorithm;
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
 } Credential;

 valid_time: Time in seconds relative to the beginning of the
 delegation certificate’s notBefore value after which the delegated
 credential is no longer valid. Endpoints will reject delegate
 credentials with valid_times exceeding 7 days (as described in
 Section 4.1).

 expected_cert_verify_algorithm: The signature algorithm of the
 Credential key pair, where the type SignatureScheme is as defined
 in [RFC8446]. This is expected to be the same as the sender’s
 CertificateVerify.algorithm. Only signature algorithms allowed
 for use in CertificateVerify messages are allowed. When using
 RSA, the public key MUST NOT use the rsaEncryption OID. As a
 result, the following algorithms are not allowed for use with
 delegated credentials: rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
 rsa_pss_rsae_sha512.

 ASN1_subjectPublicKeyInfo: The Credential’s public key, a DER-
 encoded [X.690] SubjectPublicKeyInfo as defined in [RFC5280].

 The DelegatedCredential has the following structure:

Barnes, et al. Expires 28 July 2021 [Page 8]

Internet-Draft Delegated Credentials for TLS January 2021

 struct {
 Credential cred;
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } DelegatedCredential;

 cred: The Credential structure as previously defined.

 algorithm: The signature algorithm used to verify
 DelegatedCredential.signature.

 signature: The delegation, a signature that binds the credential to
 the end-entity certificate’s public key as specified below. The
 signature scheme is specified by DelegatedCredential.algorithm.

 The signature of the DelegatedCredential is computed over the
 concatenation of:

 1. A string that consists of octet 32 (0x20) repeated 64 times.

 2. The context string "TLS, server delegated credentials" for server
 authentication and "TLS, client delegated credentials" for client
 authentication.

 3. A single 0 byte, which serves as the separator.

 4. The DER-encoded X.509 end-entity certificate used to sign the
 DelegatedCredential.

 5. DelegatedCredential.cred.

 6. DelegatedCredential.algorithm.

 The signature is computed by using the private key of the peer’s end-
 entity certificate, with the algorithm indicated by
 DelegatedCredential.algorithm.

 The signature effectively binds the credential to the parameters of
 the handshake in which it is used. In particular, it ensures that
 credentials are only used with the certificate and signature
 algorithm chosen by the delegator.

 The code changes required in order to create and verify delegated
 credentials, and the implementation complexity this entails, are
 localized to the TLS stack. This has the advantage of avoiding
 changes to security-critical and often delicate PKI code.

Barnes, et al. Expires 28 July 2021 [Page 9]

Internet-Draft Delegated Credentials for TLS January 2021

4.1. Client and Server Behavior

 This document defines the following TLS extension code point.

 enum {
 ...
 delegated_credential(34),
 (65535)
 } ExtensionType;

4.1.1. Server Authentication

 A client which supports this specification SHALL send a
 "delegated_credential" extension in its ClientHello. The body of the
 extension consists of a SignatureSchemeList (defined in [RFC8446]):

 struct {
 SignatureScheme supported_signature_algorithm<2..2^16-2>;
 } SignatureSchemeList;

 If the client receives a delegated credential without indicating
 support, then the client MUST abort with an "unexpected_message"
 alert.

 If the extension is present, the server MAY send a delegated
 credential; if the extension is not present, the server MUST NOT send
 a delegated credential. The server MUST ignore the extension unless
 TLS 1.3 or a later version is negotiated.

 The server MUST send the delegated credential as an extension in the
 CertificateEntry of its end-entity certificate; the client SHOULD
 ignore delegated credentials sent as extensions to any other
 certificate.

 The expected_cert_verify_algorithm field MUST be of a type advertised
 by the client in the SignatureSchemeList and is considered invalid
 otherwise. Clients that receive invalid delegated credentials MUST
 terminate the connection with an "illegal_parameter" alert.

4.1.2. Client Authentication

 A server that supports this specification SHALL send a
 "delegated_credential" extension in the CertificateRequest message
 when requesting client authentication. The body of the extension
 consists of a SignatureSchemeList. If the server receives a
 delegated credential without indicating support in its
 CertificateRequest, then the server MUST abort with an
 "unexpected_message" alert.

Barnes, et al. Expires 28 July 2021 [Page 10]

Internet-Draft Delegated Credentials for TLS January 2021

 If the extension is present, the client MAY send a delegated
 credential; if the extension is not present, the client MUST NOT send
 a delegated credential. The client MUST ignore the extension unless
 TLS 1.3 or a later version is negotiated.

 The client MUST send the delegated credential as an extension in the
 CertificateEntry of its end-entity certificate; the server SHOULD
 ignore delegated credentials sent as extensions to any other
 certificate.

 The algorithm field MUST be of a type advertised by the server in the
 "signature_algorithms" extension of the CertificateRequest message
 and the expected_cert_verify_algorithm field MUST be of a type
 advertised by the server in the SignatureSchemeList and considered
 invalid otherwise. Servers that receive invalid delegated
 credentials MUST terminate the connection with an "illegal_parameter"
 alert.

4.1.3. Validating a Delegated Credential

 On receiving a delegated credential and a certificate chain, the peer
 validates the certificate chain and matches the end-entity
 certificate to the peer’s expected identity. It also takes the
 following steps:

 1. Validate that DelegatedCredential.cred.valid_time is no more than
 7 days.

 2. Verify that the current time is within the validity interval of
 the credential. This is done by asserting that the current time
 is no more than the delegation certificate’s notBefore value plus
 DelegatedCredential.cred.valid_time.

 3. Verify that the delegated credential’s remaining validity time is
 no more than the maximum validity period. This is done by
 asserting that the current time is no more than the delegation
 certificate’s notBefore value plus
 DelegatedCredential.cred.valid_time plus the maximum validity
 period.

 4. Verify that expected_cert_verify_algorithm matches the scheme
 indicated in the peer’s CertificateVerify message and that the
 algorithm is allowed for use with delegated credentials.

 5. Verify that the end-entity certificate satisfies the conditions
 in Section 4.2.

Barnes, et al. Expires 28 July 2021 [Page 11]

Internet-Draft Delegated Credentials for TLS January 2021

 6. Use the public key in the peer’s end-entity certificate to verify
 the signature of the credential using the algorithm indicated by
 DelegatedCredential.algorithm.

 If one or more of these checks fail, then the delegated credential is
 deemed invalid. Clients and servers that receive invalid delegated
 credentials MUST terminate the connection with an "illegal_parameter"
 alert.

 If successful, the participant receiving the Certificate message uses
 the public key in DelegatedCredential.cred to verify the signature in
 the peer’s CertificateVerify message.

4.2. Certificate Requirements

 We define a new X.509 extension, DelegationUsage, to be used in the
 certificate when the certificate permits the usage of delegated
 credentials. What follows is the ASN.1 [X.680] for the
 DelegationUsage certificate extension.

 ext-delegationUsage EXTENSION ::= {
 SYNTAX DelegationUsage IDENTIFIED BY id-pe-delegationUsage
 }

 DelegationUsage ::= NULL

 id-pe-delegationUsage OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1)
 private(4) enterprise(1) id-cloudflare(44363) 44 }

 The extension MUST be marked non-critical. (See Section 4.2 of
 [RFC5280].) The client MUST NOT accept a delegated credential unless
 the server’s end-entity certificate satisfies the following criteria:

 * It has the DelegationUsage extension.

 * It has the digitalSignature KeyUsage (see the KeyUsage extension
 defined in [RFC5280]).

 A new extension was chosen instead of adding a new Extended Key Usage
 (EKU) to be compatible with deployed TLS and PKI software stacks
 without requiring CAs to issue new intermediate certificates.

5. Operational Considerations

Barnes, et al. Expires 28 July 2021 [Page 12]

Internet-Draft Delegated Credentials for TLS January 2021

5.1. Client Clock Skew

 One of the risks of deploying a short-lived credential system based
 on absolute time is client clock skew. If a client’s clock is
 sufficiently ahead or behind of the server’s clock, then clients will
 reject delegated credentials that are valid from the server’s
 perspective. Clock skew also affects the validity of the original
 certificates. The lifetime of the delegated credential should be set
 taking clock skew into account. Clock skew may affect a delegated
 credential at the beginning and end of its validity periods, which
 should also be taken into account.

6. IANA Considerations

 This document registers the "delegated_credentials" extension in the
 "TLS ExtensionType Values" registry. The "delegated_credentials"
 extension has been assigned a code point of 34. The IANA registry
 lists this extension as "Recommended" (i.e., "Y") and indicates that
 it may appear in the ClientHello (CH), CertificateRequest (CR), or
 Certificate (CT) messages in TLS 1.3 [RFC8446].

 This document also defines an ASN.1 module for the DelegationUsage
 certificate extension in Appendix A. IANA has registered value 95
 for "id-mod-delegated-credential-extn" in the "SMI Security for PKIX
 Module Identifier" (1.3.5.1.5.5.7.0) registry. An OID for the
 DelegationUsage certificate extension is not needed as it is already
 assigned to the extension from Cloudflare’s IANA Private Enterprise
 Number (PEN) arc.

7. Security Considerations

7.1. Security of Delegated Credential’s Private Key

 Delegated credentials limit the exposure of the private key used in a
 TLS connection by limiting its validity period. An attacker who
 compromises the private key of a delegated credential can act as a
 man-in-the-middle until the delegated credential expires. However,
 they cannot create new delegated credentials. Thus, delegated
 credentials should not be used to send a delegation to an untrusted
 party, but is meant to be used between parties that have some trust
 relationship with each other. The secrecy of the delegated
 credential’s private key is thus important and access control
 mechanisms SHOULD be used to protect it, including file system
 controls, physical security, or hardware security modules.

Barnes, et al. Expires 28 July 2021 [Page 13]

Internet-Draft Delegated Credentials for TLS January 2021

7.2. Re-use of Delegated Credentials in Multiple Contexts

 It is not possible to use the same delegated credential for both
 client and server authentication because issuing parties compute the
 corresponding signature using a context string unique to the intended
 role (client or server).

7.3. Revocation of Delegated Credentials

 Delegated credentials do not provide any additional form of early
 revocation. Since it is short lived, the expiry of the delegated
 credential revokes the credential. Revocation of the long term
 private key that signs the delegated credential (from the end-entity
 certificate) also implicitly revokes the delegated credential.

7.4. Interactions with Session Resumption

 If a client decides to cache the certificate chain and re-validate it
 when resuming a connection, the client SHOULD also cache the
 associated delegated credential and re-validate it.

7.5. Privacy Considerations

 Delegated credentials can be valid for 7 days and it is much easier
 for a service to create delegated credentials than a certificate
 signed by a CA. A service could determine the client time and clock
 skew by creating several delegated credentials with different expiry
 timestamps and observing whether the client would accept it. Client
 time could be unique and thus privacy sensitive clients, such as
 browsers in incognito mode, who do not trust the service might not
 want to advertise support for delegated credentials or limit the
 number of probes that a server can perform.

7.6. The Impact of Signature Forgery Attacks

 When TLS 1.2 servers support RSA key exchange, they may be vulnerable
 to attacks that allow forging an RSA signature over an arbitrary
 message [BLEI]. TLS 1.2 [RFC5246] (Section 7.4.7.1.) describes a
 mitigation strategy requiring careful implementation of timing
 resistant countermeasures for preventing these attacks. Experience
 shows that in practice, server implementations may fail to fully stop
 these attacks due to the complexity of this mitigation [ROBOT]. For
 TLS 1.2 servers that support RSA key exchange using a DC-enabled end-
 entity certificate, a hypothetical signature forgery attack would
 allow forging a signature over a delegated credential. The forged
 delegated credential could then be used by the attacker as the
 equivalent of a man-in-the-middle certificate, valid for a maximum of
 7 days.

Barnes, et al. Expires 28 July 2021 [Page 14]

Internet-Draft Delegated Credentials for TLS January 2021

 Server operators should therefore minimize the risk of using DC-
 enabled end-entity certificates where a signature forgery oracle may
 be present. If possible, server operators may choose to use DC-
 enabled certificates only for signing credentials, and not for
 serving non-DC TLS traffic. Furthermore, server operators may use
 elliptic curve certificates for DC-enabled traffic, while using RSA
 certificates without the DelegationUsage certificate extension for
 non-DC traffic; this completely prevents such attacks.

 Note that if a signature can be forged over an arbitrary credential,
 the attacker can choose any value for the valid_time field. Repeated
 signature forgeries therefore allow the attacker to create multiple
 delegated credentials that can cover the entire validity period of
 the certificate. Temporary exposure of the key or a signing oracle
 may allow the attacker to impersonate a server for the lifetime of
 the certificate.

8. Acknowledgements

 Thanks to David Benjamin, Christopher Patton, Kyle Nekritz, Anirudh
 Ramachandran, Benjamin Kaduk, Kazuho Oku, Daniel Kahn Gillmor, Watson
 Ladd, Robert Merget, Juraj Somorovsky, Nimrod Aviram for their
 discussions, ideas, and bugs they have found.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC5280] Cooper, D., Santesson, S., Farrell, S., Boeyen, S.,
 Housley, R., and W. Polk, "Internet X.509 Public Key
 Infrastructure Certificate and Certificate Revocation List
 (CRL) Profile", RFC 5280, DOI 10.17487/RFC5280, May 2008,
 <https://www.rfc-editor.org/info/rfc5280>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
 <https://www.rfc-editor.org/info/rfc8446>.

Barnes, et al. Expires 28 July 2021 [Page 15]

Internet-Draft Delegated Credentials for TLS January 2021

 [X.680] ITU-T, "Information technology - Abstract Syntax Notation
 One (ASN.1): Specification of basic notation", ISO/
 IEC 8824-1:2015, November 2015.

 [X.690] ITU-T, "Information technology - ASN.1 encoding Rules:
 Specification of Basic Encoding Rules (BER), Canonical
 Encoding Rules (CER) and Distinguished Encoding Rules
 (DER)", ISO/IEC 8825-1:2015, November 2015.

9.2. Informative References

 [BLEI] Bleichenbacher, D., "Chosen Ciphertext Attacks against
 Protocols Based on RSA Encryption Standard PKCS #1",
 Advances in Cryptology -- CRYPTO’98, LNCS vol. 1462,
 pages: 1-12 , 1998.

 [KEYLESS] Sullivan, N. and D. Stebila, "An Analysis of TLS Handshake
 Proxying", IEEE Trustcom/BigDataSE/ISPA 2015 , 2015.

 [RFC3820] Tuecke, S., Welch, V., Engert, D., Pearlman, L., and M.
 Thompson, "Internet X.509 Public Key Infrastructure (PKI)
 Proxy Certificate Profile", RFC 3820,
 DOI 10.17487/RFC3820, June 2004,
 <https://www.rfc-editor.org/info/rfc3820>.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246,
 DOI 10.17487/RFC5246, August 2008,
 <https://www.rfc-editor.org/info/rfc5246>.

 [RFC5912] Hoffman, P. and J. Schaad, "New ASN.1 Modules for the
 Public Key Infrastructure Using X.509 (PKIX)", RFC 5912,
 DOI 10.17487/RFC5912, June 2010,
 <https://www.rfc-editor.org/info/rfc5912>.

 [RFC8032] Josefsson, S. and I. Liusvaara, "Edwards-Curve Digital
 Signature Algorithm (EdDSA)", RFC 8032,
 DOI 10.17487/RFC8032, January 2017,
 <https://www.rfc-editor.org/info/rfc8032>.

 [RFC8555] Barnes, R., Hoffman-Andrews, J., McCarney, D., and J.
 Kasten, "Automatic Certificate Management Environment
 (ACME)", RFC 8555, DOI 10.17487/RFC8555, March 2019,
 <https://www.rfc-editor.org/info/rfc8555>.

 [ROBOT] Boeck, H., Somorovsky, J., and C. Young, "Return Of
 Bleichenbacher’s Oracle Threat (ROBOT)", 27th USENIX
 Security Symposium , 2018.

Barnes, et al. Expires 28 July 2021 [Page 16]

Internet-Draft Delegated Credentials for TLS January 2021

 [XPROT] Jager, T., Schwenk, J., and J. Somorovsky, "On the
 Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1
 v1.5 Encryption", Proceedings of the 22nd ACM SIGSAC
 Conference on Computer and Communications Security , 2015.

Appendix A. ASN.1 Module

 The following ASN.1 module provides the complete definition of the
 DelegationUsage certificate extension. The ASN.1 module makes
 imports from [RFC5912].

 DelegatedCredentialExtn
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-delegated-credential-extn(TBD) }

 DEFINITIONS IMPLICIT TAGS ::=
 BEGIN

 -- EXPORT ALL

 IMPORTS

 EXTENSION
 FROM PKIX-CommonTypes-2009 -- From RFC 5912
 { iso(1) identified-organization(3) dod(6) internet(1)
 security(5) mechanisms(5) pkix(7) id-mod(0)
 id-mod-pkixCommon-02(57) } ;

 -- OID

 id-cloudflare OBJECT IDENTIFIER ::=
 { iso(1) identified-organization(3) dod(6) internet(1) private(4)
 enterprise(1) 44363 }

 -- EXTENSION

 ext-delegationUsage EXTENSION ::=
 { SYNTAX DelegationUsage
 IDENTIFIED BY id-pe-delegationUsage }

 id-pe-delegationUsage OBJECT IDENTIFIER ::= { id-cloudflare 44 }

 DelegationUsage ::= NULL

 END

Barnes, et al. Expires 28 July 2021 [Page 17]

Internet-Draft Delegated Credentials for TLS January 2021

Appendix B. Example Certificate

 The following certificate has the Delegated Credentials OID.

 -----BEGIN CERTIFICATE-----
 MIIFRjCCBMugAwIBAgIQDGevB+lY0o/OecHFSJ6YnTAKBggqhkjOPQQDAzBMMQsw
 CQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMSYwJAYDVQQDEx1EaWdp
 Q2VydCBFQ0MgU2VjdXJlIFNlcnZlciBDQTAeFw0xOTAzMjYwMDAwMDBaFw0yMTAz
 MzAxMjAwMDBaMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYw
 FAYDVQQHEw1TYW4gRnJhbmNpc2NvMRkwFwYDVQQKExBDbG91ZGZsYXJlLCBJbmMu
 MRMwEQYDVQQDEwprYzJrZG0uY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE
 d4azI83Bw0fcPgfoeiZpZZnwGuxjBjv++wzE0zAj8vNiUkKxOWSQiGNLn+xlWUpL
 lw9djRN1rLmVmn2gb9GgdKOCA28wggNrMB8GA1UdIwQYMBaAFKOd5h/52jlPwG7o
 kcuVpdox4gqfMB0GA1UdDgQWBBSfcb7fS3fUFAyB91fRcwoDPtgtJjAjBgNVHREE
 HDAaggprYzJrZG0uY29tggwqLmtjMmtkbS5jb20wDgYDVR0PAQH/BAQDAgeAMB0G
 A1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjBpBgNVHR8EYjBgMC6gLKAqhiho
 dHRwOi8vY3JsMy5kaWdpY2VydC5jb20vc3NjYS1lY2MtZzEuY3JsMC6gLKAqhiho
 dHRwOi8vY3JsNC5kaWdpY2VydC5jb20vc3NjYS1lY2MtZzEuY3JsMEwGA1UdIARF
 MEMwNwYJYIZIAYb9bAEBMCowKAYIKwYBBQUHAgEWHGh0dHBzOi8vd3d3LmRpZ2lj
 ZXJ0LmNvbS9DUFMwCAYGZ4EMAQICMHsGCCsGAQUFBwEBBG8wbTAkBggrBgEFBQcw
 AYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEUGCCsGAQUFBzAChjlodHRwOi8v
 Y2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRFQ0NTZWN1cmVTZXJ2ZXJDQS5j
 cnQwDAYDVR0TAQH/BAIwADAPBgkrBgEEAYLaSywEAgUAMIIBfgYKKwYBBAHWeQIE
 AgSCAW4EggFqAWgAdgC72d+8H4pxtZOUI5eqkntHOFeVCqtS6BqQlmQ2jh7RhQAA
 AWm5hYJ5AAAEAwBHMEUCICiGfq+hSThRL2m8H0awoDR8OpnEHNkF0nI6nL5yYL/j
 AiEAxwebGs/T6Es0YarPzoQJrVZqk+sHH/t+jrSrKd5TDjcAdgCHdb/nWXz4jEOZ
 X73zbv9WjUdWNv9KtWDBtOr/XqCDDwAAAWm5hYNgAAAEAwBHMEUCIQD9OWA8KGL6
 bxDKfgIleHJWB0iWieRs88VgJyfAg/aFDgIgQ/OsdSF9XOy1foqge0DTDM2FExuw
 0JR0AGZWXoNtJzMAdgBElGUusO7Or8RAB9io/ijA2uaCvtjLMbU/0zOWtbaBqAAA
 AWm5hYHgAAAEAwBHMEUCIQC4vua1n3BqthEqpA/VBTcsNwMtAwpCuac2IhJ9wx6X
 /AIgb+o00k28JQo9TMpP4vzJ3BD3HXWSNc2Zizbq7mkUQYMwCgYIKoZIzj0EAwMD
 aQAwZgIxAJsX7d0SuA8ddf/m7IWfNfs3MQfJyGkEezMJX1t6sRso5z50SS12LpXe
 muGa1FE2ZgIxAL+CDUF5pz7mhrAEIjQ1MqlpF9tH40dJGvYZZQ3W23cMzSkDfvlt
 y5S4RfWHIIPjbw==
 -----END CERTIFICATE-----

Authors’ Addresses

 Richard Barnes
 Cisco

 Email: rlb@ipv.sx

 Subodh Iyengar
 Facebook

 Email: subodh@fb.com

Barnes, et al. Expires 28 July 2021 [Page 18]

Internet-Draft Delegated Credentials for TLS January 2021

 Nick Sullivan
 Cloudflare

 Email: nick@cloudflare.com

 Eric Rescorla
 Mozilla

 Email: ekr@rtfm.com

Barnes, et al. Expires 28 July 2021 [Page 19]

TLS Y. Nir

Internet-Draft Dell Technologies

Intended status: Standards Track July 3, 2020

Expires: January 4, 2021

 A Flags Extension for TLS 1.3

 draft-ietf-tls-tlsflags-03

Abstract

 A number of extensions are proposed in the TLS working group that

 carry no interesting information except the 1-bit indication that a

 certain optional feature is supported. Such extensions take 4 octets

 each. This document defines a flags extension that can provide such

 indications at an average marginal cost of 1 bit each. More

 precisely, it provides as many flag extensions as needed at 4 + the

 order of the last set bit divided by 8.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 4, 2021.

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents

 (https://trustee.ietf.org/license-info) in effect on the date of

 publication of this document. Please review these documents

 carefully, as they describe your rights and restrictions with respect

 to this document. Code Components extracted from this document must

 include Simplified BSD License text as described in Section 4.e of

Nir Expires January 4, 2021 [Page 1]

Internet-Draft TLS Flags July 2020

 the Trust Legal Provisions and are provided without warranty as

 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 1.1. Requirements and Other Notation 3

 2. The tls_flags Extension 3

 3. Rules for The Flags Extension 4

 4. IANA Considerations . 4

 4.1. Guidance for IANA Experts 5

 5. Security Considerations 6

 6. Acknowledgements . 6

 7. References . 6

 7.1. Normative References 6

 7.2. Informative References 7

 Appendix A. Change Log . 7

 Author’s Address . 8

1. Introduction

 Since the publication of TLS 1.3 ([RFC8446]) there have been several

 proposals for extensions to this protocol, where the presence of the

 content-free extension in both the ClientHello and either the

 ServerHello or EncryptedExtensions indicates nothing except either

 support for the optional feature or an intent to use the optional

 feature. Examples:

 o An extension that allows the server to tell the client that cross-

 SNI resumption is allowed: [I-D.sy-tls-resumption-group].

 o An extension that is used to negotiate support for authentication

 using both certificates and external PSKs:

 [I-D.ietf-tls-tls13-cert-with-extern-psk].

 o The post_handshake_auth extension from the TLS 1.3 base document

 indicates that the client is willing to perform post-handshake

 authentication.

 This document proposes a single extension called tls_flags that can

 enumerate such flag extensions and allowing both client and server to

 indicate support for optional features in a concise way.

 None of the current proposed extensions are such that the server

 indicates support without the client first indicating support. This

 specification enforces this restriction by specifying in Section 3

 that server bits may only reflect flags for which the client

 extension has already indicated support.

Nir Expires January 4, 2021 [Page 2]

Internet-Draft TLS Flags July 2020

1.1. Requirements and Other Notation

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

 document are to be interpreted as described in BCP 14 [RFC2119]

 [RFC8174] when, and only when, they appear in all capitals, as shown

 here.

 The term "flag extension" is used to denote an extension where the

 extension_data field is always zero-length in a particular context,

 and the presence of the extension denotes either support for some

 feature or the intent to use that feature.

 The term "flag-type feature" denotes an options TLS 1.3 feature the

 support for which is negotiated using a flag extension, whether that

 flag extension is its own extension or a value in the extension

 defined in this document.

2. The tls_flags Extension

 This document defines the following extension code point:

 enum {

 ...

 tls_flags(TBD),

 (65535)

 } ExtensionType;

 This document also defines the data for this extension as a variable-

 length bit string, allowing for the encoding of up to 2040 features.

 struct {

 opaque flags<0..255>;

 } FlagExtensions;

 The FlagExtensions field 8 flags with each octet, and its length is

 the minimal length that allows it to encode all of the present flags.

 Within each octet, the bits are packed such that the first bit is the

 LSB and the seventh bit is the MSB. The first octet holds flags 0-7,

 the second octet holds bits 8-15 and so on. For example, if we want

 to encode only flag number zero, the FlagExtension field will be 1

 octet long, that is encoded as follows:

 00000001

 If we want to encode flags 1 and 5, the field will still be 1 octet

 long:

Nir Expires January 4, 2021 [Page 3]

Internet-Draft TLS Flags July 2020

 00100010

 If we want to encode flags 3, 5, and 23, the field will have to be 3

 octets long:

 00101000 00000000 10000000

 An implementation that receives an all-zero value for this extension

 or a value that contains trailing zero bytes MUST generate a fatal

 illegal_parameter alert.

 Note that this document does not define any particular bits for this

 string. That is left to the protocol documents such as the ones in

 the examples from the previous section. Such documents will have to

 define which bit to set to show support, and the order of the bits

 within the bit string shall be enumerated in network order: bit zero

 is the high-order bit of the first octet as the flags field is

 transmitted.

3. Rules for The Flags Extension

 A client that supports this extension and at least one flag extension

 SHALL send this extension with the flags field having bits set only

 for those extensions that it intends to set. It MUST NOT send this

 extension with a length of zero.

 A server that supports this extension and also supports at least one

 of the flag-type features that use this extension and that were

 declared by the ClientHello extension SHALL send this extension with

 the intersection of the flags it supports with the flags declared by

 the client. The intersection operation MAY be implemented as a

 bitwise AND. The server may need to send two tls_flags extensions,

 one in the ServerHello and the other in the EncryptedExtensions

 message. It is up to the document for the specific feature to

 determine whether support should be acknowledged in the ServerHello

 or the EncryptedExtensions message.

 A server MUST NOT indicate support for any flag-type feature not

 previously indicated by the client. It MUST NOT include this

 extension in either message (ServerHello or EncryptedExtensions) if

 it has no appropriate flag-type to indicate. This extension MUST NOT

 be included empty.

4. IANA Considerations

 IANA is requested to assign a new value from the TLS ExtensionType

 Values registry:

Nir Expires January 4, 2021 [Page 4]

Internet-Draft TLS Flags July 2020

 o The Extension Name should be tls_flags

 o The TLS 1.3 value should be CH,SH,EE

 o The Recommended value should be Y

 o The Reference should be this document

 IANA is also requested to create a new registry under the TLS

 namespace with name "TLS Flags" and the following fields:

 o Value, which is a number between 0 and 2039. All potential values

 are available for assignment.

 o Flag Name, which is a string

 o Message, which like the "TLS 1.3" field in the ExtensionType

 registry contains the abbreviations of the messages that may

 contain the flag: CH, SH, EE, etc.

 o Recommended, which is a Y/N value determined in the document

 defining the optional feature.

 o Reference, which is a link to the document defining this flag.

 The policy for this shall be "Specification Required" as described in

 [RFC8126].

4.1. Guidance for IANA Experts

 This extension allows up to 2040 flags. However, they are not all

 the same, because the length of the extension is determined by the

 highest set bit.

 We would like to allocate the flags in such a way that the typical

 extension is as short as possible. The scenario we want to guard

 against is that in a few years some extension is defined that all

 implementations need to support and that is assigned a high number

 because all of the lower numbers have already been allocated. An

 example of such an extension is the Renegotiation Indication

 Extension defined in [RFC5746].

 For this reason, the IANA experts should allocate the flags as

 follows:

 o Flags 0-7 are reserved for documents coming out of the TLS working

 group with a specific request to assign a low number.

Nir Expires January 4, 2021 [Page 5]

Internet-Draft TLS Flags July 2020

 o Flags 8-31 are for standards-track documents that the experts

 believe will see wide adoption among either all users of TLS or a

 significant group of TLS users. For example, an extension that

 will be used by all web clients or all smart objects.

 o Flags 32-63 are for other documents, including experimental, that

 are likely to see significant adoption.

 o Flags 64-79 are not to be allocated. They are for reserved for

 private use.

 o Flags 80-2039 can be used for temporary allocation in experiments,

 for flags that are likely to see use only in very specific

 environments, for national and corporate extensions, and as

 overflow, in case one of the previous categories has been

 exhausted.

5. Security Considerations

 The extension described in this document provides a more concise way

 to express data that could otherwise be expressed in individual

 extensions. It does not send in the clear any information that would

 otherwise be sent encrypted, nor vice versa. For this reason this

 extension is neutral as far as security is concerned.

6. Acknowledgements

 The idea for writing this was expressed at the mic during the TLS

 session at IETF 104 by Eric Rescorla.

 The current bitwise formatting was suggested on the mailing list by

 Nikos Mavrogiannopoulos.

 Improvement to the encoding were suggested by Ilari Liusvaara, who

 also asked for a better explanation of the semantics of missing

 extensions.

 Useful comments received from Martin Thomson, including the

 suggestion to eliminate the option to have the server send

 unsolicited flag types.

7. References

7.1. Normative References

Nir Expires January 4, 2021 [Page 6]

Internet-Draft TLS Flags July 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

 [I-D.ietf-tls-tls13-cert-with-extern-psk]

 Housley, R., "TLS 1.3 Extension for Certificate-based

 Authentication with an External Pre-Shared Key", draft-

 ietf-tls-tls13-cert-with-extern-psk-07 (work in progress),

 December 2019.

 [I-D.sy-tls-resumption-group]

 Sy, E., "TLS Resumption across Server Name Indications for

 TLS 1.3", draft-sy-tls-resumption-group-00 (work in

 progress), March 2019.

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,

 "Transport Layer Security (TLS) Renegotiation Indication

 Extension", RFC 5746, DOI 10.17487/RFC5746, February 2010,

 <https://www.rfc-editor.org/info/rfc5746>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for

 Writing an IANA Considerations Section in RFCs", BCP 26,

 RFC 8126, DOI 10.17487/RFC8126, June 2017,

 <https://www.rfc-editor.org/info/rfc8126>.

Appendix A. Change Log

 RFC EDITOR: PLEASE REMOVE THIS SECTION AS IT IS ONLY MEANT TO AID THE

 WORKING GROUP IN TRACKING CHANGES TO THIS DOCUMENT.

 draft-ietf-tls-tlsflags-02 set the maximum number of flags to 2048,

 and added guidance for the IANA experts.

 draft-ietf-tls-tlsflags-01 allows server-only flags and allows the

 client to send an empty extension. Also modified the packing order

 of the bits.

Nir Expires January 4, 2021 [Page 7]

Internet-Draft TLS Flags July 2020

 draft-ietf-tls-tlsflags-00 had the same text as draft-nir-tls-

 tlsflags-02, and was re-submitted as a working group document

 following the adoption call.

 Version -02 replaced the fixed 64-bit string with an unlimited

 bitstring, where only the necessary octets are encoded.

 Version -01 replaced the enumeration of 8-bit values with a 64-bit

 bitstring.

 Version -00 was a quickly-thrown-together draft with the list of

 supported features encoded as an array of 8-bit values.

Author’s Address

 Yoav Nir

 Dell Technologies

 9 Andrei Sakharov St

 Haifa 3190500

 Israel

 Email: ynir.ietf@gmail.com

Nir Expires January 4, 2021 [Page 8]

jhoyla J. Hoyland
Internet-Draft Cloudflare Ltd.
Intended status: Standards Track C.A. Wood
Expires: 10 September 2020 Apple, Inc.
 9 March 2020

 TLS 1.3 Extended Key Schedule
 draft-jhoyla-tls-extended-key-schedule-01

Abstract

 TLS 1.3 is sometimes used in situations where it is necessary to
 inject extra key material into the handshake. This draft aims to
 describe methods for doing so securely. This key material must be
 injected in such a way that both parties agree on what is being
 injected and why, and further, in what order.

Note to Readers

 Discussion of this document takes place on the TLS Working Group
 mailing list (tls@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/tls/
 (https://mailarchive.ietf.org/arch/browse/tls/).

 Source for this draft and an issue tracker can be found at
 https://github.com/jhoyla/draft-jhoyla-tls-key-injection
 (https://github.com/jhoyla/draft-jhoyla-tls-key-injection).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 10 September 2020.

Hoyland & Wood Expires 10 September 2020 [Page 1]

Internet-Draft TLS 1.3 Extended Key Schedule March 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Definitions 3
 3. Key Schedule Extension 3
 3.1. Handshake Secret Injection 3
 3.2. Master Secret Injection 3
 4. Key Schedule Extension Structure 4
 5. Security Considerations 5
 6. IANA Considerations . 5
 7. References . 5
 7.1. Normative References 5
 7.2. Informative References 5
 Acknowledgments . 5
 Authors’ Addresses . 5

1. Introduction

 Introducing additional key material into the TLS handshake is a non-
 trivial process because both parties need to agree on the injection
 content and context. If the two parties do not agree then an
 attacker may exploit the mismatch in so-called channel
 synchronization attacks.

 Injecting key material into the TLS handshake allows other protocols
 to be bound to the handshake. For example, it may provide additional
 protections to the ClientHello message, which in the standard TLS
 handshake only receives protections after the server’s Finished
 message has been received. It may also permit the use of combined
 shared secrets, possibly from multiple key exchange algorithms, to be
 included in the key schedule. This pattern is common for Post
 Quantum key exchange algorithms, as discussed in
 [I-D.stebila-tls-hybrid-design].

Hoyland & Wood Expires 10 September 2020 [Page 2]

Internet-Draft TLS 1.3 Extended Key Schedule March 2020

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Key Schedule Extension

 This section describes two places in which additional secrets can be
 injected into the TLS 1.3 key schedule.

3.1. Handshake Secret Injection

 To inject key material into the Handshake Secret it is recommended to
 use an extra derive secret.

 |
 v
 Derive-Secret(., "derived early", "")
 |
 v
 Input -> HKDF-Extract
 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 (EC)DHE -> HKDF-Extract = Handshake Secret
 |
 v

 As shown in the figure above, the key schedule has an extra derive
 secret and HKDF-Extract step. This extra step isolates the Input
 material from the rest of the handshake secret, such that even
 maliciously chosen values cannot weaken the security of the key
 schedule overall.

 The additional Derive-Secret with the "derived early" label enforces
 the separation of the key schedule from vanilla TLS handshakes,
 because HKDFs can be assumed to ensure that keys derived with
 different labels are independent.

3.2. Master Secret Injection

 To inject key material into the Master Secret it is recommended to
 use an extra derive secret.

Hoyland & Wood Expires 10 September 2020 [Page 3]

Internet-Draft TLS 1.3 Extended Key Schedule March 2020

 |
 v
 Derive-Secret(., "derived early", "")
 |
 v
 Input -> HKDF-Extract
 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 0 -> HKDF-Extract = Master Secret
 |
 v

 This structrue mirrors the Handshake Injection point, the key
 schedule has an extra Extract, Derive-Secret pattern. This, again,
 should isolate the Input material from the rest of the Master Secret.

4. Key Schedule Extension Structure

 In some cases, protocols may require more than one secret to be
 injected at a particular stage in the key schedule. Thus, we require
 a generic and extensible way of doing so. To accomplish this, we use
 a structure - KeyScheduleInput - that encodes well-ordered sequences
 of secret material to inject into the key schedule. KeyScheduleInput
 is defined as follows:

 struct {
 KeyScheduleSecretType type;
 opaque secret_data<0..2^16-1>;
 } KeyScheduleSecret;

 enum {
 (65535)
 } KeyScheduleSecretType;

 struct {
 KeyScheduleSecret secrets<0..2^16-1>;
 } KeyScheduleInput;

 Each secret included in a KeyScheduleInput structure has a type and
 corresponding secret data. Each secret MUST have a unique
 KeyScheduleSecretType. When encoding KeyScheduleInput as the key
 schedule Input value, the KeyScheduleSecret values MUST be in
 ascending sorted order. This ensures that endpoints always encode
 the same KeyScheduleInput value when using the same secret keying
 material.

Hoyland & Wood Expires 10 September 2020 [Page 4]

Internet-Draft TLS 1.3 Extended Key Schedule March 2020

5. Security Considerations

 [[OPEN ISSUE: This draft has not seen any security analysis.]]

6. IANA Considerations

 [[TODO: define secret registry structure]]

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

7.2. Informative References

 [I-D.stebila-tls-hybrid-design]
 Steblia, D., Fluhrer, S., and S. Gueron, "Hybrid key
 exchange in TLS 1.3", Work in Progress, Internet-Draft,
 draft-stebila-tls-hybrid-design-03, 12 February 2020,
 <http://www.ietf.org/internet-drafts/draft-stebila-tls-
 hybrid-design-03.txt>.

Acknowledgments

 We thank Karthik Bhargavan for his comments.

Authors’ Addresses

 Jonathan Hoyland
 Cloudflare Ltd.

 Email: jonathan.hoyland@gmail.com

 Christopher A. Wood
 Apple, Inc.

 Email: cawood@apple.com

Hoyland & Wood Expires 10 September 2020 [Page 5]

jhoyla J. Hoyland
Internet-Draft Cloudflare Ltd.
Intended status: Standards Track C.A. Wood
Expires: 7 June 2021 Cloudflare
 4 December 2020

 TLS 1.3 Extended Key Schedule
 draft-jhoyla-tls-extended-key-schedule-03

Abstract

 TLS 1.3 is sometimes used in situations where it is necessary to
 inject extra key material into the handshake. This draft aims to
 describe methods for doing so securely. This key material must be
 injected in such a way that both parties agree on what is being
 injected and why, and further, in what order.

Note to Readers

 Discussion of this document takes place on the TLS Working Group
 mailing list (tls@ietf.org), which is archived at
 https://mailarchive.ietf.org/arch/browse/tls/
 (https://mailarchive.ietf.org/arch/browse/tls/).

 Source for this draft and an issue tracker can be found at
 https://github.com/jhoyla/draft-jhoyla-tls-key-injection
 (https://github.com/jhoyla/draft-jhoyla-tls-key-injection).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 7 June 2021.

Hoyland & Wood Expires 7 June 2021 [Page 1]

Internet-Draft TLS 1.3 Extended Key Schedule December 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents (https://trustee.ietf.org/
 license-info) in effect on the date of publication of this document.
 Please review these documents carefully, as they describe your rights
 and restrictions with respect to this document. Code Components
 extracted from this document must include Simplified BSD License text
 as described in Section 4.e of the Trust Legal Provisions and are
 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Conventions and Definitions 3
 3. Key Schedule Extension 3
 3.1. Handshake Secret Injection 3
 3.2. Main Secret Injection 3
 4. Key Schedule Injection Negotiation 4
 5. Key Schedule Extension Structure 4
 6. Security Considerations 5
 7. IANA Considerations . 5
 8. References . 5
 8.1. Normative References 5
 8.2. Informative References 6
 Appendix A. Potential Use Cases 6
 Acknowledgments . 7
 Authors’ Addresses . 7

1. Introduction

 Introducing additional key material into the TLS handshake is a non-
 trivial process because both parties need to agree on the injection
 content and context. If the two parties do not agree then an
 attacker may exploit the mismatch in so-called channel
 synchronization attacks, such as those described by [SLOTH].

 Injecting key material into the TLS handshake allows other protocols
 to be bound to the handshake. For example, it may provide additional
 protections to the ClientHello message, which in the standard TLS
 handshake only receives protections after the server’s Finished
 message has been received. It may also permit the use of combined
 shared secrets, possibly from multiple key exchange algorithms, to be
 included in the key schedule. This pattern is common for Post
 Quantum key exchange algorithms, as discussed in

Hoyland & Wood Expires 7 June 2021 [Page 2]

Internet-Draft TLS 1.3 Extended Key Schedule December 2020

 [I-D.ietf-tls-hybrid-design]. In particular,
 [I-D.ietf-tls-hybrid-design] uses the concatenation pattern described
 in this draft, but does not add the requisite framing.

 The goal of this document is to provide a standardised way for
 binding extra context into TLS 1.3 handshakes in a way that is easy
 to analyse from a security perspective, reducing the need for
 security analysis of extensions that affect the key schedule. It
 separates the concerns of whether an extension achieves its goals
 from the concerns of whether an extension reduces the security of a
 TLS handshake, either directly or through some unforseen interaction
 with another extension.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
 "OPTIONAL" in this document are to be interpreted as described in BCP
 14 [RFC2119] [RFC8174] when, and only when, they appear in all
 capitals, as shown here.

3. Key Schedule Extension

 This section describes two places in which additional secrets can be
 injected into the TLS 1.3 key schedule.

3.1. Handshake Secret Injection

 To inject extra key material into the Handshake Secret it is
 recommended to prefix it, inside an appropriate frame, to the
 "(EC)DHE" input, where "||" represents concatenation.

 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 KeyScheduleInput || (EC)DHE -> HKDF-Extract = Handshake Secret
 |
 v

3.2. Main Secret Injection

 To inject key material into the Main Secret it is recommended to
 prefix it, inside an appropriate frame, to the "0" input.

Hoyland & Wood Expires 7 June 2021 [Page 3]

Internet-Draft TLS 1.3 Extended Key Schedule December 2020

 |
 v
 Derive-Secret(., "derived", "")
 |
 v
 KeyScheduleInput || 0 -> HKDF-Extract = Main Secret
 |
 v

 This structure mirrors the Handshake Injection point.

4. Key Schedule Injection Negotiation

 Applications which make use of additional key schedule inputs MUST
 define a mechanism for negotiating the content and type of that
 input. This input MUST be framed in a KeyScheduleSecret struct, as
 defined in Section 5. Applications must take care that any
 negotiation that takes place unambiguously agrees a secret. It must
 be impossible, even under adversarial conditions, that a client and
 server agree on the transcript of the negotiation, but disagree on
 the secret that was negotiated.

5. Key Schedule Extension Structure

 In some cases, protocols may require more than one secret to be
 injected at a particular stage in the key schedule. Thus, we require
 a generic and extensible way of doing so. To accomplish this, we use
 a structure - KeyScheduleInput - that encodes well-ordered sequences
 of secret material to inject into the key schedule. KeyScheduleInput
 is defined as follows:

 struct {
 KeyScheduleSecretType type;
 opaque secret_data<0..2^16-1>;
 } KeyScheduleSecret;

 enum {
 (65535)
 } KeyScheduleSecretType;

 struct {
 KeyScheduleSecret secrets<0..2^16-1>;
 } KeyScheduleInput;

 Each secret included in a KeyScheduleInput structure has a type and
 corresponding secret data. Each secret MUST have a unique
 KeyScheduleSecretType. When encoding KeyScheduleInput as the key
 schedule Input value, the KeyScheduleSecret values MUST be in

Hoyland & Wood Expires 7 June 2021 [Page 4]

Internet-Draft TLS 1.3 Extended Key Schedule December 2020

 ascending sorted order. This ensures that endpoints always encode
 the same KeyScheduleInput value when using the same secret keying
 material.

6. Security Considerations

 [BINDEL] provides a proof that the concatenation approach in
 Section 3 is secure as long as either the concatenated secret is
 secure or the existing KDF input is secure.

 [[OPEN ISSUE: Is this guarantee sufficient? Do we also need to
 guarantee that a malicious prefix can’t weaken the resulting PRF
 output?]]

7. IANA Considerations

 This document requests the creation of a new IANA registry: TLS
 KeyScheduleInput Types. This registry should be under the existing
 Transport Layer Security (TLS) Parameters heading. It should be
 administered under a Specification Required policy [RFC8126].

 [[OPEN ISSUE: specify initial registry values]]

 +=======+=============+=========+===========+
 | Value | Description | DTLS-OK | Reference |
 +=======+=============+=========+===========+
 | TBD | TBD | TBD | TBD |
 +-------+-------------+---------+-----------+

 Table 1

8. References

8.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119,
 DOI 10.17487/RFC2119, March 1997,
 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
 Writing an IANA Considerations Section in RFCs", BCP 26,
 RFC 8126, DOI 10.17487/RFC8126, June 2017,
 <https://www.rfc-editor.org/info/rfc8126>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Hoyland & Wood Expires 7 June 2021 [Page 5]

Internet-Draft TLS 1.3 Extended Key Schedule December 2020

8.2. Informative References

 [BINDEL] Bindel, N., Brendel, J., Fischlin, M., Goncalves, B., and
 D. Stebila, "Hybrid Key Encapsulation Mechanisms and
 Authenticated Key Exchange", Post-Quantum Cryptography pp.
 206-226, DOI 10.1007/978-3-030-25510-7_12, 2019,
 <https://doi.org/10.1007/978-3-030-25510-7_12>.

 [I-D.friel-tls-eap-dpp]
 Friel, O. and D. Harkins, "Bootstrapped TLS
 Authentication", Work in Progress, Internet-Draft, draft-
 friel-tls-eap-dpp-01, 13 July 2020, <http://www.ietf.org/
 internet-drafts/draft-friel-tls-eap-dpp-01.txt>.

 [I-D.ietf-tls-hybrid-design]
 Steblia, D., Fluhrer, S., and S. Gueron, "Hybrid key
 exchange in TLS 1.3", Work in Progress, Internet-Draft,
 draft-ietf-tls-hybrid-design-01, 15 October 2020,
 <http://www.ietf.org/internet-drafts/draft-ietf-tls-
 hybrid-design-01.txt>.

 [I-D.ietf-tls-semistatic-dh]
 Rescorla, E., Sullivan, N., and C. Wood, "Semi-Static
 Diffie-Hellman Key Establishment for TLS 1.3", Work in
 Progress, Internet-Draft, draft-ietf-tls-semistatic-dh-01,
 7 March 2020, <http://www.ietf.org/internet-drafts/draft-
 ietf-tls-semistatic-dh-01.txt>.

 [SLOTH] Bhargavan, K. and G. Leurent, "Transcript Collision
 Attacks: Breaking Authentication in TLS, IKE, and SSH",
 Proceedings 2016 Network and Distributed System
 Security Symposium, DOI 10.14722/ndss.2016.23418, 2016,
 <https://doi.org/10.14722/ndss.2016.23418>.

Appendix A. Potential Use Cases

 The draft provides a mechanism for importing additional information
 into the TLS key schedule. Future applications and specifications
 can use this mechanism to layer TLS on to other protocols, as opposed
 to layering other protocols over TLS. For example, as discussed in
 Section 1, this can be used for hybrid key exchange, which, in
 effect, is layering TLS over a secondary AKE. Although the key
 exchanges are interleaved, the post-quantum AKE completes first, as
 demonstrated by its output key being used as an input for computing
 TLS’s master secret.

Hoyland & Wood Expires 7 June 2021 [Page 6]

Internet-Draft TLS 1.3 Extended Key Schedule December 2020

 This can also be used in more direct ways, such as bootstrapping EAP-
 TLS as in [I-D.friel-tls-eap-dpp]. This draft also allows for more
 direct implementations of things such as semi-static DH
 [I-D.ietf-tls-semistatic-dh]. The aim of this draft is to be
 sufficiently flexible that it can be used as the basis for layering
 TLS on top of any protocol that outputs a secure channel binding,
 where secure is defined by the goals of the overall layered protocol.
 This draft does not provide security itself, it simply provides a
 standard format for layering.

Acknowledgments

 We thank Karthik Bhargavan for his comments.

Authors’ Addresses

 Jonathan Hoyland
 Cloudflare Ltd.

 Email: jonathan.hoyland@gmail.com

 Christopher A. Wood
 Cloudflare

 Email: caw@heapingbits.net

Hoyland & Wood Expires 7 June 2021 [Page 7]

Network Working Group M. Thomson

Internet-Draft Mozilla

Intended status: Informational 13 July 2020

Expires: 14 January 2021

 Secure Negotiation of Incompatible Protocols in TLS

 draft-thomson-tls-snip-00

Abstract

 An extension is defined for TLS that allows a client and server to

 detect an attempt to force the use of less-preferred application

 protocol even where protocol options are incompatible. This

 supplements application-layer protocol negotiation, which allows

 choices between compatible protocols to be authenticated.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the TLS Working Group

 mailing list (tls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/tls/.

 Source for this draft and an issue tracker can be found at

 https://github.com/martinthomson/snip.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 14 January 2021.

Thomson Expires 14 January 2021 [Page 1]

Internet-Draft Authenticating Incompatible Protocols July 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. Incompatible Protocols and SVCB 4

 4. Authenticating Incompatible Protocols 4

 5. Protocol Authentication Scope 5

 5.1. SVCB Discovery Scope 6

 5.2. QUIC Version Negotiation 6

 5.3. Alternative Services 6

 5.4. Scope for Other Discovery Methods 7

 6. Incompatible Protocol Selection 7

 7. Security Considerations 8

 8. IANA Considerations . 8

 9. References . 8

 9.1. Normative References 8

 9.2. Informative References 9

 Appendix A. Acknowledgments 10

 Author’s Address . 10

1. Introduction

 With increased diversity in protocol choice, some applications are

 able to use one of several semantically-equivalent protocols to

 achieve their goals. This is particularly notable in HTTP where

 there are currently three distinct protocols: HTTP/1.1 [HTTP11],

 HTTP/2 [HTTP2], and HTTP/3 [HTTP3]. This is also true for protocols

 that support variants based on both TLS [TLS] and DTLS [DTLS].

 For protocols that are mutually compatible, Application-Layer

 Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

 negotiate protocol selection.

Thomson Expires 14 January 2021 [Page 2]

Internet-Draft Authenticating Incompatible Protocols July 2020

 In ALPN, the client offers a list of options in a TLS ClientHello and

 the server chooses the option that it most prefers. A downgrade

 attack occurs where both client and server support a protocol that

 the server prefers more than than the selected protocol. ALPN

 protects against this attack by ensuring that the server is aware of

 all options the client supports and including those options and the

 server choice under the integrity protection provided by the TLS

 handshake.

 This downgrade protection functions because protocol negotiation is

 part of the TLS handshake. The introduction of semantically-

 equivalent protocols that use incompatible handshakes introduces new

 opportunities for downgrade attack. For instance, it is not possible

 to negotiate the use of HTTP/2 based on an attempt to connect using

 HTTP/3. The former relies on TCP, whereas the latter uses UDP.

 These protocols are therefore mutually incompatible.

 This document defines an extension to TLS that allows clients to

 discover when servers support alternative protocols that are

 incompatible with the currently-selected TLS version. This might be

 used to avoid downgrade attack caused by interference in protocol

 discovery mechanisms.

 This extension is motivated by the addition of new mechanisms, such

 as [SVCB]. SVCB enables the discovery of servers that support

 multiple different protocols, some of which are incompatible. The

 extension can also be used to authenticate protocol choices that are

 discovered by other means.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 Two protocols are consider "compatible" if it is possible to

 negotiate either using the same connection attempt. In comparison,

 protocols are "incompatible" if they require separate attempts to

 establish a connection.

Thomson Expires 14 January 2021 [Page 3]

Internet-Draft Authenticating Incompatible Protocols July 2020

3. Incompatible Protocols and SVCB

 The SVCB record [SVCB] allows a client to learn about services

 associated with a domain name. This includes how to locate a server,

 along with supplementary information about the server, including

 protocols that the server supports. This allows a client to start

 using a protocol of their choice without added latency, as the lookup

 can be performed concurrently with other name resolution. The added

 cost of the additional DNS queries is minimal.

 However, SVCB provides no protection against a downgrade attack

 between incompatible protocols. An attacker could remove DNS records

 for client-preferred protocols, leaving the client to believe that

 only less-prefered, mutually-incompatible options are available. The

 client only offers compatible options to a server in its TLS

 handshake. Even if a client were to inform the server that it

 supports a more preferred protocol, the server would not be able to

 act upon it.

 Authenticating all of the information presented in SVCB records might

 provide clients with complete information about server support, but

 this is impractical for several reasons:

 * it is not possible to ensure that all server instances in a

 deployment have the same protocol configuration, as deployments

 for a single name routinely include multiple providers that cannot

 coordinate closely;

 * the ability to provide a subset of valid DNS records is integral

 to many strategies for managing servers; and

 * it is difficult to ensure that cached DNS records are synchronized

 with server state.

 Overall, an authenticated TLS handshake is a better source of

 authoritative information about the protocols that are supported.

4. Authenticating Incompatible Protocols

 The incompatible_protocols(TBD) TLS extension provides clients with

 information about the incompatible protocols that are supported by

 servers.

 enum {

 incompatible_protocols(TBD), (65535)

 } ExtensionType;

Thomson Expires 14 January 2021 [Page 4]

Internet-Draft Authenticating Incompatible Protocols July 2020

 A client that supports the extension advertises an empty extension.

 In response, a server that supports this extension includes a list of

 application protocol identifiers. The "extension_data" field of the

 value server extension uses the "ProtocolNameList" format defined in

 [ALPN]. This syntax is shown in Figure 1.

 struct {

 select (Handshake.msg_type) {

 case client_hello:

 Empty;

 case encrypted_extensions:

 ProtocolNameList incompatible_protocols;

 };

 } IncompatibleProtocols;

 Figure 1: TLS Syntax for incompatible_protocols Extension

 This extension only applies to the ClientHello and

 EncryptedExtensions messages. An implementation that receives this

 extension in any other handshake message MUST send a fatal

 illegal_parameter alert.

 A server deployment that supports multiple incompatible protocols MAY

 advertise all protocols that are supported. A server MAY limit this

 to protocols that it considers to have similar semantics to protocols

 that the client lists in its application_layer_protocol_negotiation

 extension.

 The definition of what a server includes is intentionally loose. It

 is better that a server offer more information than less as the needs

 of a client are not necessarily well reflected in its ALPN extension.

 However, it is not reasonable to require that a server advertise all

 potential protocols as that is unlikely to be practical.

 A server MUST omit any compatible protocols from this extension on

 the understanding that the client will include compatible protocols

 in the application_layer_protocol_negotiation extension.

 A server needs to ensure that protocols advertised in this fashion

 are available to the client within the same protocol authentication

 scope.

5. Protocol Authentication Scope

 The protocol authentication scope is the set of protocol endpoints at

 a server that share a protocol configuration. A client learns of

 this scope as part of the process it follows to discover the server.

Thomson Expires 14 January 2021 [Page 5]

Internet-Draft Authenticating Incompatible Protocols July 2020

 By default, the protocol authentication scope is a single protocol

 endpoint. The default protocol authentication scope offers no means

 to authenticate incompatible protocols as it is not possible for a

 client to access any endpoint that supports those protocols. A

 client cannot use information from the incompatible_protocols

 extension unless a wider scope is used.

 [[TODO: This likely needs some discussion.]]

5.1. SVCB Discovery Scope

 For SVCB records, the protocol authentication scope is defined by the

 set of ServiceForm SVCB records with the same SvcDomainName.

 This ensures that the final choice a client makes between ServiceForm

 SVCB records is protected by this extension. If the client does not

 receive a SVCB record for a protocol that the server includes in its

 incompatible_protocols extension, then it can assume that this

 omission was caused by an error or attack.

 Thus, for SVCB, a choice between AliasForm records (or CNAME or DNAME

 records) is not authenticated, but choices between ServiceForm

 records is. This allows for server deployments for the same name to

 have different administrative control and protocol configurations.

5.2. QUIC Version Negotiation

 TODO: define how this can be used to authenticate protocol choices

 where there are incompatible QUIC versions.

5.3. Alternative Services

 It is possible to negotiate protocols based on an established

 connection without exposure to downgrade. The Alternative Services

 [ALTSVC] bootstrapping in HTTP/3 does just that. Assuming that

 HTTP/2 or HTTP/1.1 are not vulnerable to attacks that would

 compromise integrity, a server can advertise the presence of an

 endpoint that supports HTTP/3.

 Under these assumptions Alternative Services is secure, but it has

 performance trade-offs. A client could attempt the protocol it

 prefers most, but that comes at a risk that this protocol is not

 supported by a server. A client could implement a fallback, which

 might even be performed concurrently (see [HAPPY-EYEBALLS]), but this

 costs time and resources. A client avoids these costs by attempting

 the protocol it believes to be most widely supported, though this

 comes with a performance penalty in cases where the most-preferred

 protocol is supported.

Thomson Expires 14 January 2021 [Page 6]

Internet-Draft Authenticating Incompatible Protocols July 2020

 A server that is discovered using Alternative Services uses the

 default protocol authentication scope. As use of Alternative

 Services is discretionary for both client and server, a client cannot

 expect to receive information about incompatible protocols. To avoid

 downgrade, a client only has to avoid using an Alternative Service

 that offers a less-preferred protocol.

5.4. Scope for Other Discovery Methods

 For other discovery methods, a definition for protocol authentication

 scope is needed before a client can act on what is learned using the

 incompatible_protocols extension. That definition needs to define

 how to discover server instances that support all incompatible

 protocols in the scope.

 In particular, a server that is discovered using forms of DNS-based

 name resolution other than SVCB uses the default protocol

 authentication scope. This discovery method does not provide enough

 information to locate other incompatible protocols.

 For instance, an HTTPS server that is discovered using purely A or

 AAAA records (and CNAME or DNAME records) might advertise support for

 incompatible protocols, but as there is no way to determine where

 those protocols are supported, a client cannot act on the

 information. Note that Alternative Services do not change the

 protocol authentication scope.

 Deployments of discovery methods that define a protocol

 authentication scope larger than the default need to ensure that

 every server provides information that is consistent with every

 protocol authentication scope that includes that server. A server

 that fails to indicate support for a protocol that is within a

 protocol authentication scope does not offer any protection against

 attack; a server that advertises a protocol that the client cannot

 discover risks this misconfiguration being identified as an attack by

 clients.

6. Incompatible Protocol Selection

 This represents a different model for protocol selection than the one

 used by ALPN. In ALPN, the client presents a set of (compatible)

 options and the server chooses its most preferred.

 In comparison, as the client makes a selection between incompatible

 protocols before making a connection attempt, this design only

 provides the client with information about other incompatible

 protocols that the server might support. Any choice to attempt a

 connection using those protocols is left to the client.

Thomson Expires 14 January 2021 [Page 7]

Internet-Draft Authenticating Incompatible Protocols July 2020

 In summary:

 * For compatible protocols, the server chooses

 * For incompatible protocols, the client chooses

 Detecting a potential downgrade between incompatible protocols does

 not automatically imply that a client abandon a connection attempt.

 This is left to client policy.

 For a protocol like HTTP/3, this might not result in the client

 choosing to use HTTP/3, even if the server prefers that protocol.

 Blocking of UDP or QUIC is known to be widespread. As a result,

 clients might adopt a policy of tolerating a downgrade to a TCP-based

 protocol, even if HTTP/3 were preferred. However, as blocking of UDP

 is highly correlated by access network, clients that are able to

 establish HTTP/3 connections to some servers might choose to apply a

 stricter response when a server that indicates HTTP/3 support is

 unreachable.

7. Security Considerations

 This design depends on the integrity of the TLS handshake across all

 forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS]. An

 attacker that can modify a TLS handshake in any one of these

 protocols can cause a client to believe that other options do not

 exist.

 A server deployment that uses AliasForm SVCB records and does not

 uniformly support a client-preferred protocol is vulnerable to

 downgrade attacks that steer clients toward instances that lack

 support for that protocol. This attack is ineffective for protocols

 that are consistently supported by all server instances.

8. IANA Considerations

 TODO: register the extension

9. References

9.1. Normative References

 [ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

Thomson Expires 14 January 2021 [Page 8]

Internet-Draft Authenticating Incompatible Protocols July 2020

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

9.2. Informative References

 [ALTSVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP

 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

 [DTLS] Rescorla, E., Tschofenig, H., and N. Modadugu, "The

 Datagram Transport Layer Security (DTLS) Protocol Version

 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-

 dtls13-38, 29 May 2020, <http://www.ietf.org/internet-

 drafts/draft-ietf-tls-dtls13-38.txt>.

 [HAPPY-EYEBALLS]

 Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with

 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April

 2012, <https://www.rfc-editor.org/info/rfc6555>.

 [HTTP11] Fielding, R., Nottingham, M., and J. Reschke, "HTTP/1.1

 Messaging", Work in Progress, Internet-Draft, draft-ietf-

 httpbis-messaging-10, 12 July 2020, <http://www.ietf.org/

 internet-drafts/draft-ietf-httpbis-messaging-10.txt>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

 DOI 10.17487/RFC7540, May 2015,

 <https://www.rfc-editor.org/info/rfc7540>.

 [HTTP3] Bishop, M., "Hypertext Transfer Protocol Version 3

 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

 quic-http-29, 9 June 2020, <http://www.ietf.org/internet-

 drafts/draft-ietf-quic-http-29.txt>.

 [QUIC-TLS] Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

 Work in Progress, Internet-Draft, draft-ietf-quic-tls-29,

 9 June 2020, <http://www.ietf.org/internet-drafts/draft-

 ietf-quic-tls-29.txt>.

Thomson Expires 14 January 2021 [Page 9]

Internet-Draft Authenticating Incompatible Protocols July 2020

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

 [SVCB] Schwartz, B., Bishop, M., and E. Nygren, "Service binding

 and parameter specification via the DNS (DNS SVCB and

 HTTPSSVC)", Work in Progress, Internet-Draft, draft-ietf-

 dnsop-svcb-httpssvc-03, 11 June 2020,

 <http://www.ietf.org/internet-drafts/draft-ietf-dnsop-

 svcb-httpssvc-03.txt>.

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

Appendix A. Acknowledgments

Author’s Address

 Martin Thomson

 Mozilla

 Email: mt@lowentropy.net

Thomson Expires 14 January 2021 [Page 10]

Network Working Group M. Thomson

Internet-Draft Mozilla

Intended status: Informational 4 January 2021

Expires: 8 July 2021

 Secure Negotiation of Incompatible Protocols in TLS

 draft-thomson-tls-snip-01

Abstract

 An extension is defined for TLS that allows a client and server to

 detect an attempt to force the use of less-preferred application

 protocol even where protocol options are incompatible. This

 supplements application-layer protocol negotiation, which allows

 choices between compatible protocols to be authenticated.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the TLS Working Group

 mailing list (tls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/tls/.

 Source for this draft and an issue tracker can be found at

 https://github.com/martinthomson/snip.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 8 July 2021.

Thomson Expires 8 July 2021 [Page 1]

Internet-Draft Authenticating Incompatible Protocols January 2021

Copyright Notice

 Copyright (c) 2021 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Terminology . 3

 3. Incompatible Protocols and SVCB 4

 4. Authenticating Incompatible Protocols 4

 5. Incompatible Protocol Selection 6

 6. Protocol Authentication Scope 7

 6.1. The Default Scope . 8

 6.2. SVCB Scope . 8

 6.3. QUIC Version Negotiation Scope 8

 7. Other Discovery Methods 9

 7.1. Alternative Services 9

 8. Operational Considerations 10

 9. Security Considerations 11

 10. IANA Considerations . 11

 11. References . 11

 11.1. Normative References 11

 11.2. Informative References 11

 Appendix A. Acknowledgments 13

 Author’s Address . 13

1. Introduction

 With increased diversity in protocol choice, some applications are

 able to use one of several semantically-equivalent protocols to

 achieve their goals. This is particularly notable in HTTP where

 there are currently three distinct protocols: HTTP/1.1 [HTTP11],

 HTTP/2 [HTTP2], and HTTP/3 [HTTP3]. This is also true of protocols

 that support variants based on both TLS [TLS] and DTLS [DTLS].

 For protocols that are mutually compatible, Application-Layer

 Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

 negotiate protocol selection.

Thomson Expires 8 July 2021 [Page 2]

Internet-Draft Authenticating Incompatible Protocols January 2021

 In ALPN, the client offers a list of options in a TLS ClientHello and

 the server chooses the option that it most prefers. A downgrade

 attack occurs where both client and server support a protocol that

 the server prefers more than than the selected protocol. ALPN

 protects against this attack by ensuring that the server is aware of

 all options the client supports and including those options and the

 server choice under the integrity protection provided by the TLS

 handshake.

 This downgrade protection functions because protocol negotiation is

 part of the TLS handshake. The introduction of semantically-

 equivalent protocols that use incompatible handshakes introduces new

 opportunities for downgrade attack. For instance, it is not possible

 to negotiate the use of HTTP/2 based on an attempt to connect using

 HTTP/3. The former relies on TCP, whereas the latter uses UDP.

 These protocols are therefore mutually incompatible.

 This document defines an extension to TLS that allows clients to

 discover when servers support alternative protocols that are

 incompatible with the currently-selected TLS version. This might be

 used to avoid downgrade attack caused by interference in protocol

 discovery mechanisms.

 This extension is motivated by the addition of new mechanisms, such

 as [SVCB]. SVCB enables the discovery of servers that support

 multiple different protocols, some of which are incompatible. The

 extension can also be used to authenticate protocol choices that are

 discovered by other means.

2. Terminology

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in

 BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

 Two protocols are consider "compatible" if it is possible to

 negotiate either using the same connection attempt. In comparison,

 protocols are "incompatible" if they require separate attempts to

 establish a connection.

Thomson Expires 8 July 2021 [Page 3]

Internet-Draft Authenticating Incompatible Protocols January 2021

3. Incompatible Protocols and SVCB

 The SVCB record [SVCB] allows a client to learn about services

 associated with a domain name. This includes how to locate a server,

 along with supplementary information about the server, including

 protocols that the server supports. This allows a client to start

 using a protocol of their choice without added latency, as the lookup

 can be performed concurrently with other name resolution. The added

 cost of the additional DNS queries is minimal.

 However, SVCB provides no protection against a downgrade attack

 between incompatible protocols. An attacker could remove DNS records

 for client-preferred protocols, leaving the client to believe that

 only less-prefered, mutually-incompatible options are available. The

 client only offers compatible options to a server in its TLS

 handshake. Even if a client were to inform the server that it

 supports a more preferred protocol, the server would not be able to

 act upon it.

 Authenticating all of the information presented in SVCB records might

 provide clients with complete information about server support, but

 this is impractical for several reasons:

 * it is not possible to ensure that all server instances in a

 deployment have the same protocol configuration, as deployments

 for a single name routinely include multiple providers that cannot

 coordinate closely;

 * the ability to provide a subset of valid DNS records is integral

 to many strategies for managing servers; and

 * it is difficult to ensure that cached DNS records are synchronized

 with server state.

 Overall, an authenticated TLS handshake is a better source of

 authoritative information about the protocols that are supported.

4. Authenticating Incompatible Protocols

 The incompatible_protocols(TBD) TLS extension provides clients with

 information about the incompatible protocols that are supported by

 servers.

 enum {

 incompatible_protocols(TBD), (65535)

 } ExtensionType;

Thomson Expires 8 July 2021 [Page 4]

Internet-Draft Authenticating Incompatible Protocols January 2021

 A client that supports the extension advertises an empty extension.

 In response, a server that supports this extension includes a list of

 application protocol identifiers. The "extension_data" field of the

 value server extension uses the "ProtocolName" type defined in

 [ALPN], which is repeated here. This syntax is shown in Figure 1.

 enum {

 default(0), svcb(1), quic(2), (255)

 } ProtocolAuthenticationScope;

 opaque ProtocolName<1..2^8-1>;

 struct {

 ProtocolAuthenticationScope scope;

 ProtocolName protocol;

 } IncompatibleProtocol;

 struct {

 select (Handshake.msg_type) {

 case client_hello:

 Empty;

 case encrypted_extensions:

 IncompatibleProtocol incompatible_protocols<3..2^16-1>;

 };

 } IncompatibleProtocols;

 Figure 1: TLS Syntax for incompatible_protocols Extension

 This extension only applies to the ClientHello and

 EncryptedExtensions messages. An implementation that receives this

 extension in any other handshake message MUST send a fatal

 illegal_parameter alert.

 A server deployment that supports multiple incompatible protocols MAY

 advertise all protocols that are supported. Each protocol is paired

 with an identifier for the Protocol Authentication Scope, which

 defines how endpoints for that protocol might be discovered; see

 Section 6.

 A server needs to ensure that protocols advertised in this fashion

 are available to the client within the same protocol authentication

 scope.

Thomson Expires 8 July 2021 [Page 5]

Internet-Draft Authenticating Incompatible Protocols January 2021

 A server MUST omit any compatible protocols from this extension.

 That is, any protocol that the server might be able to select, had

 the client offered the protocol in the

 application_layer_protocol_negotiation extension. Clients are

 expected to include all compatible protocols in the

 application_layer_protocol_negotiation extension.

 A server MAY limit the incompatible protocols that it advertises to

 those that have similar semantics to protocols that the client lists

 in its application_layer_protocol_negotiation extension.

 The definition of what a server includes is intentionally flexible.

 It is better that a server offer more information than less as the

 needs of a client are not necessarily well reflected in its ALPN

 extension. However, it might not be feasible for a server to

 advertise all potential protocols; see Section 8 for more discussion

 on this point.

5. Incompatible Protocol Selection

 This document expands the definition of protocol negotiation to

 include both compatible and incompatible protocols and provide

 protection against downgrade for both types of selection. ALPN

 [ALPN] only considers compatible protocols: the client presents a set

 of compatible options and the server chooses its most preferred.

 With an selection of protocols that includes incompatible options,

 the client makes a selection between incompatible options before

 making a connection attempt. Therefore, this design does not enable

 negotiation, it instead provides the client with information about

 other incompatible protocols that the server might support.

 Detecting a potential downgrade between incompatible protocols does

 not automatically imply that a client abandon a connection attempt.

 It only provides the client with authenticated information about its

 options. What a client does with this information is left to client

 policy.

 In brief:

 * For compatible protocols, the client offers all acceptable options

 and the server selects its most preferred

 * For incompatible protocols, information the server offers is

 authenticated and the client is able to act on that

Thomson Expires 8 July 2021 [Page 6]

Internet-Draft Authenticating Incompatible Protocols January 2021

 For a protocol like HTTP/3, this might not result in the client

 choosing to use HTTP/3, even if HTTP/3 is preferred and the server

 indicates that a service endpoint supporting HTTP/3 is available.

 Blocking of UDP or QUIC is known to be widespread. As a result,

 clients might adopt a policy of tolerating a downgrade to a TCP-based

 protocol, even if HTTP/3 were preferred. However, as blocking of UDP

 is highly correlated by access network, clients that are able to

 establish HTTP/3 connections to some servers might choose to apply a

 stricter policy when a server that indicates HTTP/3 support is

 unreachable.

6. Protocol Authentication Scope

 A protocol authentication scope includes a set of service endpoints

 that are provided downgrade protection by this mechanism. There are

 multiple types of protocol authentication scope, each identified by a

 different type. The type of protocol authentication scope is encoded

 in the "ProtocolAuthenticationScope" enum.

 The type of protocol authentication scope describes how a client

 might learn of all of the service endpoints that a server offers in

 that scope. If a client has attempted to discover service endpoints

 using the methods defined by the protocol authentication scope,

 receiving an incompatible_protocols extension from a server is a

 strong indication of a potential downgrade attack.

 A client considers that a downgrade attack might have occurred if all

 of the following occur:

 1. A server advertises that there are endpoints that support a

 protocol that the client prefers over the protocol that is

 currently in use.

 2. The protocol authentication scope associated with that protocol

 is understood by the client and the client attempted to discover

 services in that scope.

 In response to detecting a potential downgrade attack, a client might

 abandon the current connection attempt and report an error. A client

 that supports discovery of incompatible protocols, but chooses not to

 make a discovery attempt under normal conditions might instead not

 fail, but it could use what it learns as cause to initiate discovery.

Thomson Expires 8 July 2021 [Page 7]

Internet-Draft Authenticating Incompatible Protocols January 2021

6.1. The Default Scope

 The default protocol authentication scope reserves an identifier of

 0. A client cannot act on information about incompatible protocols

 advertised with this scope. A server MUST NOT advertise incompatible

 protocols with this scope; however, a client MUST ignore

 advertisements it receives.

 The default protocol authentication scope is reserved for discovery

 methods that have no explicit scope; see Section 7 for more on this

 subject.

6.2. SVCB Scope

 The SVCB protocol authentication scope uses an identifier of 1. A

 server that lists incompatible protocols with this scope indicates

 that SVCB records ServiceForm records with the same SvcDomainName

 exist that refer to services that support the indicated protocol.

 The SVCB protocol authentication scope also applies to records that

 use the SVCB form, like HTTPS.

 This ensures that the final choice a client makes between ServiceForm

 SVCB records is protected by this extension. If the client does not

 receive a SVCB record for a protocol that the server includes in its

 incompatible_protocols extension, then it can assume that this

 omission was caused by an error or attack.

 A choice between AliasForm records (or CNAME or DNAME records) is not

 authenticated, but choices between ServiceForm records is. This

 allows for server deployments for the same name to have different

 administrative control and protocol configurations.

6.3. QUIC Version Negotiation Scope

 The QUIC version negotiation protocol authentication scope uses an

 identifier of 2. A server that lists incompatible protocols with

 this scope indicates that QUIC version negotiation at the same server

 IP and port could be used to learn of incompatible QUIC versions that

 support the indicated protocol.

 Using this protocol authentication scope depends on application

 protocols that are dependent on a specific QUIC version.

Thomson Expires 8 July 2021 [Page 8]

Internet-Draft Authenticating Incompatible Protocols January 2021

7. Other Discovery Methods

 For other discovery methods, a definition for protocol authentication

 scope is needed before a client can act on what is learned using the

 incompatible_protocols extension. That definition needs to define

 how to discover server instances that support all incompatible

 protocols in the scope.

 In particular, a server that is discovered using forms of DNS-based

 name resolution other than SVCB uses the default protocol

 authentication scope; see Section 6.1. Discovering services in this

 way does not provide enough information to locate other incompatible

 protocols.

 For instance, an HTTPS server that is discovered using purely A or

 AAAA records (and CNAME or DNAME records) might advertise support for

 incompatible protocols, but as there is no way to determine where

 those protocols are supported, a client cannot act on the

 information. Note that Alternative Services do not change the

 protocol authentication scope.

 Deployments of discovery methods that define a protocol

 authentication scope larger than the default need to ensure that

 every server provides information that is consistent with every

 protocol authentication scope that includes that server. A server

 that fails to indicate support for a protocol that is within a

 protocol authentication scope does not offer any protection against

 attack; a server that advertises a protocol that the client cannot

 discover risks this misconfiguration being identified as an attack by

 clients.

7.1. Alternative Services

 It is possible to negotiate protocols based on an established

 connection without exposure to downgrade. The Alternative Services

 [ALTSVC] bootstrapping in HTTP/3 [HTTP3] does just that. Assuming

 that HTTP/2 or HTTP/1.1 are not vulnerable to attacks that would

 compromise integrity, a server can advertise the presence of an

 endpoint that supports HTTP/3.

Thomson Expires 8 July 2021 [Page 9]

Internet-Draft Authenticating Incompatible Protocols January 2021

 Under these assumptions Alternative Services is secure, but it has

 performance trade-offs. A client could attempt the protocol it

 prefers most, but that comes at a risk that this protocol is not

 supported by a server. A client could implement a fallback, which

 might even be performed concurrently (see [HAPPY-EYEBALLS]), but this

 costs time and resources. A client avoids these costs by attempting

 the protocol it believes to be most widely supported, though this

 comes with a performance penalty in cases where the most-preferred

 protocol is supported.

 A server that is discovered using Alternative Services uses the

 default protocol authentication scope. As use of Alternative

 Services is discretionary for both client and server, a client cannot

 expect to receive information about incompatible protocols. To avoid

 downgrade, a client only has to limit its use of Alternative Services

 to those that it prefers more than the active protocol.

8. Operational Considerations

 By listing incompatible protocols, a server does not indicate how to

 find endpoints that support those protocols, only that they exist.

 This ensures that server configuration is minimized, as servers do

 not require tight coordination. Providing even this much information

 could present operational difficulties as it requires that

 incompatible protocols are only listed when those protocols are

 deployed.

 Server deployments can choose not to provide information about

 incompatible protocols, which denies clients information about

 downgrade attacks but might avoid the operational complexity of

 providing accurate information.

 During rollout of a new, incompatible protocol, until the deployment

 is stable and not at risk of being disabled, servers SHOULD NOT

 advertise the existence of the new protocol. Protocol deployments

 that are disabled, first need to be removed from the

 incompatible_protocols extension or there could be some loss of

 service. Though the incompatible_protocols extension only applies at

 the time of the TLS handshake, clients might take some time to act on

 the information. If an incompatible protocol is removed from

 deployment between when the client completes a handshake and when it

 acts, this could be treated as an error by the client.

 If a server does not list available, incompatible protocols, clients

 cannot learn about other services and so cannot detect downgrade

 attacks against those protocols.

Thomson Expires 8 July 2021 [Page 10]

Internet-Draft Authenticating Incompatible Protocols January 2021

9. Security Considerations

 This design depends on the integrity of the TLS handshake across all

 forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS]. An

 attacker that can modify a TLS handshake in any one of these

 protocols can cause a client to believe that other options do not

 exist.

 A server deployment that uses AliasForm SVCB records and does not

 uniformly support a client-preferred protocol is vulnerable to

 downgrade attacks that steer clients toward instances that lack

 support for that protocol. This attack is ineffective for protocols

 that are consistently supported by all server instances.

10. IANA Considerations

 TODO: register the extension

 TODO: create a registry of scopes

11. References

11.1. Normative References

 [ALPN] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

11.2. Informative References

 [ALTSVC] Nottingham, M., McManus, P., and J. Reschke, "HTTP

 Alternative Services", RFC 7838, DOI 10.17487/RFC7838,

 April 2016, <https://www.rfc-editor.org/info/rfc7838>.

Thomson Expires 8 July 2021 [Page 11]

Internet-Draft Authenticating Incompatible Protocols January 2021

 [DTLS] Rescorla, E., Tschofenig, H., and N. Modadugu, "The

 Datagram Transport Layer Security (DTLS) Protocol Version

 1.3", Work in Progress, Internet-Draft, draft-ietf-tls-

 dtls13-39, 2 November 2020, <http://www.ietf.org/internet-

 drafts/draft-ietf-tls-dtls13-39.txt>.

 [HAPPY-EYEBALLS]

 Wing, D. and A. Yourtchenko, "Happy Eyeballs: Success with

 Dual-Stack Hosts", RFC 6555, DOI 10.17487/RFC6555, April

 2012, <https://www.rfc-editor.org/info/rfc6555>.

 [HTTP11] Fielding, R., Nottingham, M., and J. Reschke, "HTTP/1.1",

 Work in Progress, Internet-Draft, draft-ietf-httpbis-

 messaging-13, 14 December 2020, <http://www.ietf.org/

 internet-drafts/draft-ietf-httpbis-messaging-13.txt>.

 [HTTP2] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

 DOI 10.17487/RFC7540, May 2015,

 <https://www.rfc-editor.org/info/rfc7540>.

 [HTTP3] Bishop, M., "Hypertext Transfer Protocol Version 3

 (HTTP/3)", Work in Progress, Internet-Draft, draft-ietf-

 quic-http-33, 15 December 2020, <http://www.ietf.org/

 internet-drafts/draft-ietf-quic-http-33.txt>.

 [QUIC-TLS] Thomson, M. and S. Turner, "Using TLS to Secure QUIC",

 Work in Progress, Internet-Draft, draft-ietf-quic-tls-33,

 13 December 2020, <http://www.ietf.org/internet-drafts/

 draft-ietf-quic-tls-33.txt>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

 [SVCB] Schwartz, B., Bishop, M., and E. Nygren, "Service binding

 and parameter specification via the DNS (DNS SVCB and

 HTTPSSVC)", Work in Progress, Internet-Draft, draft-ietf-

 dnsop-svcb-httpssvc-03, 11 June 2020,

 <http://www.ietf.org/internet-drafts/draft-ietf-dnsop-

 svcb-httpssvc-03.txt>.

 [TLS] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

Thomson Expires 8 July 2021 [Page 12]

Internet-Draft Authenticating Incompatible Protocols January 2021

Appendix A. Acknowledgments

 Benjamin Schwartz provided significant input into the design of the

 mechanism and helped clarify many points.

Author’s Address

 Martin Thomson

 Mozilla

 Email: mt@lowentropy.net

Thomson Expires 8 July 2021 [Page 13]

TLS Working Group V. Vasiliev

Internet-Draft Google

Intended status: Standards Track 26 June 2020

Expires: 28 December 2020

 TLS Application-Layer Protocol Settings Extension

 draft-vvv-tls-alps-00

Abstract

 This document describes a Transport Layer Security (TLS) extension

 for negotiating application-layer protocol settings (ALPS) within the

 TLS handshake. Any application-layer protocol operating over TLS can

 use this mechanism to indicate its settings to the peer in parallel

 with the TLS handshake completion.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the TLS Working Group

 mailing list (tls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/tls/

 (https://mailarchive.ietf.org/arch/browse/tls/).

 Source for this draft and an issue tracker can be found at

 https://github.com/vasilvv/tls-alps (https://github.com/vasilvv/tls-

 alps).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 28 December 2020.

Vasiliev Expires 28 December 2020 [Page 1]

Internet-Draft TLS ALPS June 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Conventions and Definitions 3

 3. Semantics . 3

 4. Wire protocol . 4

 5. Security Considerations 6

 6. IANA Considerations . 7

 7. References . 7

 7.1. Normative References 7

 7.2. Informative References 7

 Acknowledgments . 8

 Author’s Address . 8

1. Introduction

 An application-layer protocol often starts with both parties

 negotiating parameters under which the protocol operates; for

 instance, HTTP/2 [RFC7540] uses a SETTINGS frame to exchange the list

 of protocol parameters supported by each endpoint. This is usually

 achieved by waiting for TLS handshake [RFC8446] to complete and then

 performing the application-layer handshake within the application

 protocol itself. This approach, despite its apparent simplicity at

 first, has multiple drawbacks:

 1. While the server is technically capable of sending configuration

 to the peer as soon as it sends its Finished message, most TLS

 implementations do not allow any application data to be sent

 until the Finished message is received from the client. This

 adds an extra round-trip to the time of when the server settings

 are available to the client.

Vasiliev Expires 28 December 2020 [Page 2]

Internet-Draft TLS ALPS June 2020

 2. In QUIC, any settings delivered within the application layer can

 arrive after other application data; thus, the application has to

 operate under the assumption that peer’s settings are not always

 available.

 3. If the application needs to be aware of the server settings in

 order to send 0-RTT data, the application has to manually

 integrate with the TLS stack to associate the settings with TLS

 session tickets.

 This document introduces a new TLS extension, "application_settings",

 that allows applications to exchange settings within the TLS

 handshake. Through doing that, the settings can be made available to

 the application as soon as the handshake completes, and can be

 associated with TLS session tickets automatically at the TLS layer.

 This approach allows the application protocol to be designed with the

 assumption that it has access to the peer’s settings whenever it is

 able to send data.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. Semantics

 Settings are defined to be an opaque blob that is specified by the

 application when initiating a TLS connection. The settings are meant

 to be a _declaration_ of the protocol parameters supported by the

 sender. While in this version of the extension the server settings

 are always sent first, this may change in future versions; thus, the

 application MUST NOT vary client settings based on the ones received

 from the server.

 ALPS is _not_ a negotiation mechanism: there is no notion of

 rejecting peer’s settings, and the settings are not responses to one

 another. Nevertheless, it is possible for parties to coordinate

 behavior by, for instance, requiring a certain parameter to be

 present in both client and server settings. This makes ALPS

 mechanism similar to QUIC transport parameters

 [I-D.ietf-quic-transport] or HTTP/2 SETTINGS frame [RFC7540], but

 puts it in contrast to similar mechanisms in TLS.

Vasiliev Expires 28 December 2020 [Page 3]

Internet-Draft TLS ALPS June 2020

 Settings are exchanged as a part of the TLS handshake that is

 encrypted with the handshake keys. When the server settings are

 sent, the identity of the client has not been yet established;

 therefore, an application MUST NOT use ALPS if it requires the

 settings to be available only to the authenticated clients.

 The ALPS model provides applications with a guarantee that the

 settings are available before any application data can be written.

 Note that this implies that when the full handshake is performed, the

 server can no longer send data immediately after sending its Finished

 message; it has to wait for the client to respond with its settings.

 This may negatively impact the latency of the protocols where the

 server sends the first message, however it should be noted that

 sending application data before receiving has not been widely

 supported by TLS implementations, nor has it been allowed in

 situations when establishing client identity through TLS is required.

 ALPS can only be used in conjunction with Application-Layer Protocol

 Negotiation: the client MUST offer ALPN [RFC7301] if advertising ALPS

 support, and the server MUST NOT reply with ALPS unless it is also

 negotiating ALPN. The ALPS payload is protocol-dependent, and as

 such it MUST be specified with respect to a selected ALPN.

 For application protocols that support 0-RTT data, both the client

 and the server have to remember the settings provided by the both

 sides during the original connection. If the client sends 0-RTT data

 and the server accepts it, the ALPS values SHALL be the same values

 as were during the original connection. In all other cases

 (including session resumption that does not result in server

 accepting early data), new ALPS values SHALL be negotiated.

 If the client wishes to send different client settings for the 0-RTT

 session, it MUST NOT offer 0-RTT. Conversely, if the server would

 send different server settings, it MUST reject 0-RTT. Note that the

 ALPN itself is similarly required to match the one in the original

 connection, thus the settings only need to be remembered or checked

 for a single application protocol.

4. Wire protocol

 ALPS is only supported in TLS version 1.3 or later, as the earlier

 versions do not provide any confidentiality protections for the

 handshake data. The exchange is performed in three steps:

 1. The client sends an extension in ClientHello that enumerates all

 ALPN values for which ALPS is supported.

Vasiliev Expires 28 December 2020 [Page 4]

Internet-Draft TLS ALPS June 2020

 2. The server sends an encrypted extension containing the server

 settings.

 3. The client sends a new handshake message containing the client

 settings.

 Client Server

 ClientHello

 + alpn

 + alps -------->

 ServerHello

 {EncryptedExtensions}

 + {alpn}

 + {alps}

 ...

 <-------- {Finished}

 {ClientApplicationSettings}

 {Certificate*}

 {CertificateVerify*}

 {Finished} -------->

 + Indicates extensions sent in the

 previously noted message.

 {} Indicates messages protected using

 the handshake keys.

 * Indicates optional messages that are

 not related to ALPS.

 Figure 1: ALPS exchange in a full TLS handshake

 A TLS client can enable ALPS by specifying an "application_settings"

 extension. The value of the "extension_data" field for the ALPS

 extension SHALL be a ApplicationSettingsSupport struct:

 struct {

 ProtocolName supported_protocols<2..2^16-1>;

 } ApplicationSettingsSupport;

 Here, the "supported_protocols" field indicates the names of the

 protocols (as defined in [RFC7301]) for which ALPS exchange is

 supported; this is necessary for the situations when the client

 offers multiple ALPN values but only supports ALPS in some of them.

Vasiliev Expires 28 December 2020 [Page 5]

Internet-Draft TLS ALPS June 2020

 If the server chooses an ALPN value for which the client has offered

 ALPS support, the server MAY send an "application_settings" extension

 in the EncryptedExtensions. The value of the "extension_data" field

 in that case SHALL be an opaque blob containing the server settings

 as specified by the application protocol.

 If the client receives an EncryptedExtensions message containing an

 "application_settings" extension from the server, after receiving

 server’s Finished message it MUST send a ClientApplicationSettings

 handshake message before sending the Finished message:

 enum {

 client_application_settings(TBD), (255)

 } HandshakeType;

 struct {

 opaque application_settings<0..2^16-1>;

 } ClientApplicationSettings;

 The value of the "application_settings" field SHALL be an opaque blob

 containing the client settings as specified by the application

 protocol. If the client is providing a client certificate, the

 ClientApplicationSettings message MUST precede the Certificate

 message sent by the client.

 If the ClientApplicationSettings message is sent or received during

 the handshake, it SHALL be appended to the end of client’s Handshake

 Context context as defined in Section 4.4 of [RFC8446]. In addition,

 for Post-Handshake Handshake Context, it SHALL be appended after the

 client Finished message.

 When performing session resumption with 0-RTT data, the settings are

 carried over from the original connection. The server SHALL send an

 empty "application_settings" extension if it accepts 0-RTT, and the

 client SHALL NOT send a ClientApplicationSettings message.

5. Security Considerations

 ALPS is protected using the handshake keys, which are the secret keys

 derived as a result of (EC)DHE between the client and the server.

 In order to ensure that the ALPS values are authenticated, the TLS

 implementation MUST NOT reveal the contents of peer’s ALPS until

 peer’s Finished message is received, with exception of cases where

 the ALPS has been carried over from the previous connection.

Vasiliev Expires 28 December 2020 [Page 6]

Internet-Draft TLS ALPS June 2020

6. IANA Considerations

 IANA will update the "TLS ExtensionType Values" registry to include

 "application_settings" with the value of TBD; the list of messages in

 which this extension may appear is "CH, SH".

 IANA will also update the "TLS HandshakeType" registry to include

 "client_application_settings" message with value TBD, and "DTLS-OK"

 set to "Y".

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

 [I-D.ietf-quic-transport]

 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed

 and Secure Transport", Work in Progress, Internet-Draft,

 draft-ietf-quic-transport-29, 9 June 2020,

 <http://www.ietf.org/internet-drafts/draft-ietf-quic-

 transport-29.txt>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

 DOI 10.17487/RFC7540, May 2015,

 <https://www.rfc-editor.org/info/rfc7540>.

Vasiliev Expires 28 December 2020 [Page 7]

Internet-Draft TLS ALPS June 2020

Acknowledgments

 This document has benefited from contributions and suggestions from

 David Benjamin, Nick Harper, David Schinazi, Renjie Tang and many

 others.

Author’s Address

 Victor Vasiliev

 Google

 Email: vasilvv@google.com

Vasiliev Expires 28 December 2020 [Page 8]

TLS Working Group D. Benjamin

Internet-Draft V. Vasiliev

Intended status: Standards Track Google

Expires: 25 March 2021 21 September 2020

 TLS Application-Layer Protocol Settings Extension

 draft-vvv-tls-alps-01

Abstract

 This document describes a Transport Layer Security (TLS) extension

 for negotiating application-layer protocol settings (ALPS) within the

 TLS handshake. Any application-layer protocol operating over TLS can

 use this mechanism to indicate its settings to the peer in parallel

 with the TLS handshake completion.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the TLS Working Group

 mailing list (tls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/tls/

 (https://mailarchive.ietf.org/arch/browse/tls/).

 Source for this draft and an issue tracker can be found at

 https://github.com/vasilvv/tls-alps (https://github.com/vasilvv/tls-

 alps).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 25 March 2021.

Benjamin & Vasiliev Expires 25 March 2021 [Page 1]

Internet-Draft TLS ALPS September 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Conventions and Definitions 3

 3. Semantics . 3

 4. Wire Protocol . 4

 4.1. Client Encrypted Extensions 6

 4.2. 0-RTT Handshakes . 7

 5. Security Considerations 7

 6. IANA Considerations . 8

 7. References . 8

 7.1. Normative References 8

 7.2. Informative References 8

 Acknowledgments . 9

 Authors’ Addresses . 9

1. Introduction

 An application-layer protocol often starts with both parties

 negotiating parameters under which the protocol operates; for

 instance, HTTP/2 [RFC7540] uses a SETTINGS frame to exchange the list

 of protocol parameters supported by each endpoint. This is usually

 achieved by waiting for TLS handshake [RFC8446] to complete and then

 performing the application-layer handshake within the application

 protocol itself. This approach, despite its apparent simplicity at

 first, has multiple drawbacks:

 1. While the server is technically capable of sending configuration

 to the peer as soon as it sends its Finished message, most TLS

 implementations do not allow any application data to be sent

 until the Finished message is received from the client. This

 adds an extra round-trip to the time of when the server settings

 are available to the client.

Benjamin & Vasiliev Expires 25 March 2021 [Page 2]

Internet-Draft TLS ALPS September 2020

 2. In QUIC, any settings delivered within the application layer can

 arrive after other application data; thus, the application has to

 operate under the assumption that peer’s settings are not always

 available.

 3. If the application needs to be aware of the server settings in

 order to send 0-RTT data, the application has to manually

 integrate with the TLS stack to associate the settings with TLS

 session tickets.

 This document introduces a new TLS extension, "application_settings",

 that allows applications to exchange settings within the TLS

 handshake. Through doing that, the settings can be made available to

 the application as soon as the handshake completes, and can be

 associated with TLS session tickets automatically at the TLS layer.

 This approach allows the application protocol to be designed with the

 assumption that it has access to the peer’s settings whenever it is

 able to send data.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. Semantics

 Settings are defined to be an opaque blob that is specified by the

 application when initiating a TLS connection. The settings are meant

 to be a _declaration_ of the protocol parameters supported by the

 sender. While in this version of the extension the server settings

 are always sent first, this may change in future versions; thus, the

 application MUST NOT vary client settings based on the ones received

 from the server.

 ALPS is _not_ a negotiation mechanism: there is no notion of

 rejecting peer’s settings, and the settings are not responses to one

 another. Nevertheless, it is possible for parties to coordinate

 behavior by, for instance, requiring a certain parameter to be

 present in both client and server settings. This makes ALPS

 mechanism similar to QUIC transport parameters

 [I-D.ietf-quic-transport] or HTTP/2 SETTINGS frame [RFC7540], but

 puts it in contrast to similar mechanisms in TLS.

Benjamin & Vasiliev Expires 25 March 2021 [Page 3]

Internet-Draft TLS ALPS September 2020

 Settings are exchanged as a part of the TLS handshake that is

 encrypted with the handshake keys. When the server settings are

 sent, the identity of the client has not been yet established;

 therefore, an application MUST NOT use ALPS if it requires the

 settings to be available only to the authenticated clients.

 The ALPS model provides applications with a guarantee that the

 settings are available before any application data can be written.

 Note that this implies that when the full handshake is performed, the

 server can no longer send data immediately after sending its Finished

 message; it has to wait for the client to respond with its settings.

 This may negatively impact the latency of the protocols where the

 server sends the first message, however it should be noted that

 sending application data before receiving has not been widely

 supported by TLS implementations, nor has it been allowed in

 situations when establishing client identity through TLS is required.

 ALPS can only be used in conjunction with Application-Layer Protocol

 Negotiation: the client MUST offer ALPN [RFC7301] if advertising ALPS

 support, and the server MUST NOT reply with ALPS unless it is also

 negotiating ALPN. The ALPS payload is protocol-dependent, and as

 such it MUST be specified with respect to a selected ALPN.

4. Wire Protocol

 ALPS is only supported in TLS version 1.3 or later, as the earlier

 versions do not provide any confidentiality protections for the

 handshake data. The exchange is performed in three steps:

 1. The client sends an extension in ClientHello that enumerates all

 ALPN values for which ALPS is supported.

 2. The server sends an encrypted extension containing the server

 settings.

 3. The client sends an encrypted extension containing the client

 settings.

Benjamin & Vasiliev Expires 25 March 2021 [Page 4]

Internet-Draft TLS ALPS September 2020

 Client Server

 ClientHello

 + alpn

 + alps -------->

 ServerHello

 {EncryptedExtensions}

 + alpn

 + alps

 ...

 <-------- {Finished}

 {EncryptedExtensions}

 + alps

 {Certificate*}

 {CertificateVerify*}

 {Finished} -------->

 + Indicates extensions sent in the

 previously noted message.

 {} Indicates messages protected using

 the handshake keys.

 * Indicates optional messages that are

 not related to ALPS.

 Figure 1: ALPS exchange in a full TLS handshake

 A TLS client can enable ALPS by specifying an "application_settings"

 extension in the ClientHello message. The value of the

 "extension_data" field for this extension SHALL be a

 ApplicationSettingsSupport struct:

 struct {

 ProtocolName supported_protocols<2..2^16-1>;

 } ApplicationSettingsSupport;

 Here, the "supported_protocols" field indicates the names of the

 protocols (as defined in [RFC7301]) for which ALPS exchange is

 supported; this is necessary for the situations when the client

 offers multiple ALPN values but only supports ALPS in some of them.

Benjamin & Vasiliev Expires 25 March 2021 [Page 5]

Internet-Draft TLS ALPS September 2020

 If the server chooses an ALPN value for which the client has offered

 ALPS support, the server MAY negotiate ALPS by sending an

 "application_settings" extension in its EncryptedExtensions message.

 The value of the "extension_data" field in that case SHALL be an

 opaque blob containing the server settings as specified by the

 application protocol.

 If the client receives an EncryptedExtensions message containing an

 "application_settings" extension from the server, it MUST send an

 EncryptedExtensions message (see Section 4.1) containing an

 "application_extensions" extension. The value of the

 "extension_data" in this extension SHALL be an opaque blob containing

 the client settings as specified by the application protocol. A

 server which negotiates ALPS MUST abort the handshake with a

 "missing_extension" alert if the client’s EncryptedExtensions is

 missing this extension.

4.1. Client Encrypted Extensions

 This specification introduces the client EncryptedExtensions message.

 The format and HandshakeType code point match the server

 EncryptedExtensions message. When sent, it is encrypted with

 handshake traffic keys and sent by the client after receiving the

 server Finished message and before the client sends the Certificate,

 CertificateVerify (if any), and Finished messages. It SHALL be

 appended to the Client Handshake Context, as defined Section 4.4 of

 [RFC8446]. It additionally SHALL be inserted after the server

 Finished in the Post-Handshake Handshake Context.

 The client MUST send the EncryptedExtensions message if any extension

 sent in the server EncryptedExtension message contains the CEE token

 in the TLS 1.3 column of the TLS ExtensionType Values registry.

 Otherwise, the client MUST NOT send the message. The server MUST

 abort the handshake with a "unexpected_message" alert if the message

 was sent or omitted incorrectly.

 The client MAY send an extension in the client EncryptedExtension

 message if that extension’s entry in the registry contains a CEE

 token and the server EncryptedExtensions message included the

 extension. Otherwise, the client MUST NOT send the extension. If a

 server receives an extension which does not meet this criteria, it

 MUST abort the handshake with an "unsupported_extension" alert.

 Future extensions MAY use the client EncryptedExtensions message by

 including the CEE token in the TLS 1.3 registry. The above rules

 ensure clients will not send EncryptedExtensions messages to older

 servers, but will send EncryptedExtensions when some negotiated

 extension uses it.

Benjamin & Vasiliev Expires 25 March 2021 [Page 6]

Internet-Draft TLS ALPS September 2020

 [[TODO: Section 4.6.1 of RFC8446 allows the server to predict the

 client Finished flight and send a ticket early. This is still

 possible with 0-RTT handshakes here because we omit rather than

 repeat the redudant ALPS information, but, in the general extension

 case, client EncryptedExtensions breaks this. Extension order is

 unpredictable. We should resolve this conflict, either by dropping

 that feature or removing flexibility here.]]

4.2. 0-RTT Handshakes

 ALPS ensures settings are available before reading and writing

 application data, so handshakes which negotiate early data instead

 use application settings from the PSK. To use early data with a PSK,

 the TLS implementation MUST associate both client and server

 application settings, if any, with the PSK. For a resumption PSK,

 these values are determined from the original connection. For an

 external PSK, this values should be configured with it. Existing

 PSKs are considered to not have application settings.

 If the server accepts early data, the server SHALL NOT send an

 "application_settings" extension, and thus the client SHALL NOT send

 a "application_settings" extension in its EncryptedExtensions

 message. Unless the server has sent some other extension which uses

 client EncryptedExtensions, the client SHALL NOT send an

 EncryptedExtensions message. Instead, the connection implicitly uses

 the PSK’s application settings, if any.

 If the server rejects early data, application settings are negotiated

 independently of the PSK, as if early data were not offered.

 If the client wishes to send different client settings for the

 connection, it MUST NOT offer 0-RTT. Conversely, if the server

 wishes to use send different server settings, it MUST reject 0-RTT.

 Note that the ALPN itself is similarly required to match the one in

 the original connection, thus the settings only need to be remembered

 or checked for a single application protocol. Implementations are

 RECOMMENDED to first determine the desired application protocol and

 settings independent of early data, and then decline to offer or

 accept early data if the values do not match the PSK. This preserves

 any ALPN and ALPS configuration specified by the calling application.

5. Security Considerations

 ALPS is protected using the handshake keys, which are the secret keys

 derived as a result of (EC)DHE between the client and the server.

Benjamin & Vasiliev Expires 25 March 2021 [Page 7]

Internet-Draft TLS ALPS September 2020

 In order to ensure that the ALPS values are authenticated, the TLS

 implementation MUST NOT reveal the contents of peer’s ALPS until

 peer’s Finished message is received, with exception of cases where

 the ALPS has been carried over from the previous connection.

6. IANA Considerations

 IANA will update the "TLS ExtensionType Values" registry to include

 "application_settings" with the value of TBD; the list of messages in

 which this extension may appear is "CH, EE, CEE".

7. References

7.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC7301] Friedl, S., Popov, A., Langley, A., and E. Stephan,

 "Transport Layer Security (TLS) Application-Layer Protocol

 Negotiation Extension", RFC 7301, DOI 10.17487/RFC7301,

 July 2014, <https://www.rfc-editor.org/info/rfc7301>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

7.2. Informative References

 [I-D.ietf-quic-transport]

 Iyengar, J. and M. Thomson, "QUIC: A UDP-Based Multiplexed

 and Secure Transport", Work in Progress, Internet-Draft,

 draft-ietf-quic-transport-30, 9 September 2020,

 <http://www.ietf.org/internet-drafts/draft-ietf-quic-

 transport-30.txt>.

 [RFC7540] Belshe, M., Peon, R., and M. Thomson, Ed., "Hypertext

 Transfer Protocol Version 2 (HTTP/2)", RFC 7540,

 DOI 10.17487/RFC7540, May 2015,

 <https://www.rfc-editor.org/info/rfc7540>.

Benjamin & Vasiliev Expires 25 March 2021 [Page 8]

Internet-Draft TLS ALPS September 2020

Acknowledgments

 This document has benefited from contributions and suggestions from

 Nick Harper, David Schinazi, Renjie Tang and many others.

Authors’ Addresses

 David Benjamin

 Google

 Email: davidben@google.com

 Victor Vasiliev

 Google

 Email: vasilvv@google.com

Benjamin & Vasiliev Expires 25 March 2021 [Page 9]

TLS Working Group V. Vasiliev

Internet-Draft Google

Intended status: Standards Track 12 July 2020

Expires: 13 January 2021

 Transport Layer Security (TLS) Resumption across Server Names

 draft-vvv-tls-cross-sni-resumption-00

Abstract

 This document specifies a way for the parties in the Transport Layer

 Security (TLS) protocol to indicate that an individual session ticket

 can be used to perform resumption even if the Server Name of the new

 connection does not match the Server Name of the original.

Discussion Venues

 This note is to be removed before publishing as an RFC.

 Discussion of this document takes place on the TLS Working Group

 mailing list (tls@ietf.org), which is archived at

 https://mailarchive.ietf.org/arch/browse/tls/

 (https://mailarchive.ietf.org/arch/browse/tls/).

 Source for this draft and an issue tracker can be found at

 https://github.com/vasilvv/tls-cross-sni-resumption

 (https://github.com/vasilvv/tls-cross-sni-resumption).

Status of This Memo

 This Internet-Draft is submitted in full conformance with the

 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering

 Task Force (IETF). Note that other groups may also distribute

 working documents as Internet-Drafts. The list of current Internet-

 Drafts is at https://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months

 and may be updated, replaced, or obsoleted by other documents at any

 time. It is inappropriate to use Internet-Drafts as reference

 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on 13 January 2021.

Vasiliev Expires 13 January 2021 [Page 1]

Internet-Draft TLS Cross-SNI Resumption July 2020

Copyright Notice

 Copyright (c) 2020 IETF Trust and the persons identified as the

 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal

 Provisions Relating to IETF Documents (https://trustee.ietf.org/

 license-info) in effect on the date of publication of this document.

 Please review these documents carefully, as they describe your rights

 and restrictions with respect to this document. Code Components

 extracted from this document must include Simplified BSD License text

 as described in Section 4.e of the Trust Legal Provisions and are

 provided without warranty as described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2

 2. Conventions and Definitions 3

 3. The Extension . 3

 4. Security Considerations 3

 5. IANA Considerations . 4

 6. References . 4

 6.1. Normative References 4

 6.2. Informative References 5

 Acknowledgments . 5

 Author’s Address . 5

1. Introduction

 Transport Layer Security protocol [RFC8446] allows the clients to use

 an abbreviated handshake in cases where the client has previously

 established a secure session with the same server. This mechanism is

 known as "session resumption", and its positive impact on performance

 makes it desirable to be able to use it as frequently as possible.

Vasiliev Expires 13 January 2021 [Page 2]

Internet-Draft TLS Cross-SNI Resumption July 2020

 Modern application-level protocols, HTTP in particular, often require

 accessing multiple servers within a single workflow. Since the

 identity of the server is established through its certificate, in the

 ideal case, the resumption would be possible to all of the domains

 for which the certificate is valid (see [PERF] for a survey of

 potential practical impact of such approach). TLS, starting with

 version 1.3, defines the SNI value to be a property of an individual

 connection that is not retained across sessions ([RFC8446],

 Section 4.2.11). However, in the absence of additional signals, it

 discourages using a session ticket when the SNI value does not match

 ([RFC8446], Section 4.6.1), as there is normally no reason to assume

 that all servers sharing the same certificate would also share the

 same session keys. The extension defined in this document allows the

 server to provide such a signal in-band.

2. Conventions and Definitions

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

 "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

 "OPTIONAL" in this document are to be interpreted as described in BCP

 14 [RFC2119] [RFC8174] when, and only when, they appear in all

 capitals, as shown here.

3. The Extension

 The server MAY send a resumption_across_names(TBD) extension in a

 NewSessionTicket message. That extension SHALL have an empty body.

 If the extension is sent, it indicates that the client MAY use the

 ticket for any SNI value for which the certificate presented by the

 server is valid. The server MUST handle the ticket correctly by

 either resuming and using a new SNI provided by the client, or by

 ignoring the ticket.

 The server MAY send the extension if it reasonably believes that any

 server for any identity presented in its certificate would be capable

 of accepting that ticket. The server SHOULD NOT send the extension

 otherwise, since, if the client follows the single-use ticket policy

 recommended by [RFC8446], sending the ticket results in it being no

 longer usable regardless of whether resumption has succeeded.

4. Security Considerations

 This document does not alter any of the security requirements of

 [RFC8446], but merely lifts a performance-motivated "SHOULD NOT"

 recommendation from Section 4.6.1. Notably, it still relies on the

 server certificate being re-validated against the new SNI at the

 session resumption time.

Vasiliev Expires 13 January 2021 [Page 3]

Internet-Draft TLS Cross-SNI Resumption July 2020

 If a client certificate has been associated with the session, the

 client MUST use the same policy on whether to present said

 certificate to the server as if it were a new TLS session. For

 instance, if the client would show a certificate choice prompt for

 every individual domain it connects to, it MUST show that prompt for

 the new host when performing cross-domain resumption.

 Cross-domain resumption, like other similar mechanisms (e.g. cross-

 domain HTTP connection reuse), can incentivize the server deployments

 to create server certificates valid for a wider range of domains than

 they would otherwise. However, any increase in the scope of a

 certificate comes at a cost: the wider is the scope of the

 certificate, the wider is the impact of the key compromise for that

 certificate. In addition, creating a certificate that is valid for

 multiple hostnames can lead to complications if some of those

 hostnames change ownership, or otherwise require a different

 operational domain.

5. IANA Considerations

 IANA (will add/has added) the following entry to the "TLS

 ExtensionType Values" table of the "Transport Layer Security (TLS)

 Extensions" registry:

 Value TBD

 Extension Name resumption_across_names

 TLS 1.3 NST

 Recommended N

 Reference This document

6. References

6.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate

 Requirement Levels", BCP 14, RFC 2119,

 DOI 10.17487/RFC2119, March 1997,

 <https://www.rfc-editor.org/info/rfc2119>.

 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC

 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,

 May 2017, <https://www.rfc-editor.org/info/rfc8174>.

Vasiliev Expires 13 January 2021 [Page 4]

Internet-Draft TLS Cross-SNI Resumption July 2020

 [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol

 Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,

 <https://www.rfc-editor.org/info/rfc8446>.

6.2. Informative References

 [PERF] Sy, E., Moennich, M., Mueller, T., Federrath, H., and M.

 Fischer, "Enhanced Performance for the encrypted Web

 through TLS Resumption across Hostnames", 7 February 2019,

 <https://arxiv.org/pdf/1902.02531.pdf>.

Acknowledgments

 Cross-name resumption has been previously implemented in the QUIC

 Crypto protocol as a preloaded list of hostnames.

 Erik Sy has previously proposed a similar mechanism for TLS, draft-

 sy-tls-resumption-group (https://datatracker.ietf.org/doc/draft-sy-

 tls-resumption-group/). This document incorporates ideas from that

 draft.

 This document has benefited from contributions and suggestions from

 David Benjamin, Nick Harper, David Schinazi, Ryan Sleevi, Ian Swett

 and many others.

Author’s Address

 Victor Vasiliev

 Google

 Email: vasilvv@google.com

Vasiliev Expires 13 January 2021 [Page 5]

	draft-ietf-tls-subcerts-09
	draft-ietf-tls-subcerts-10
	draft-ietf-tls-tlsflags-03
	draft-jhoyla-tls-extended-key-schedule-01
	draft-jhoyla-tls-extended-key-schedule-03
	draft-thomson-tls-snip-00
	draft-thomson-tls-snip-01
	draft-vvv-tls-alps-00
	draft-vvv-tls-alps-01
	draft-vvv-tls-cross-sni-resumption-00

