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Abstract

   The organizational separation between the operator of a TLS endpoint
   and the certification authority can create limitations.  For example,
   the lifetime of certificates, how they may be used, and the
   algorithms they support are ultimately determined by the
   certification authority.  This document describes a mechanism by
   which operators may delegate their own credentials for use in TLS,
   without breaking compatibility with peers that do not support this
   specification.

Discussion Venues

   This note is to be removed before publishing as an RFC.

   Source for this draft and an issue tracker can be found at
   https://github.com/tlswg/tls-subcerts (https://github.com/tlswg/tls-
   subcerts).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on 28 December 2020.

Copyright Notice

   Copyright (c) 2020 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.
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1.  Introduction

   Typically, a TLS server uses a certificate provided by some entity
   other than the operator of the server (a "Certification Authority" or
   CA) [RFC8446] [RFC5280].  This organizational separation makes the
   TLS server operator dependent on the CA for some aspects of its
   operations, for example:

   *  Whenever the server operator wants to deploy a new certificate, it
      has to interact with the CA.

   *  The server operator can only use TLS signature schemes for which
      the CA will issue credentials.

   These dependencies cause problems in practice.  Server operators
   often deploy TLS termination services in locations such as remote
   data centers or Content Delivery Networks (CDNs) where it may be
   difficult to detect key compromises.  Short-lived certificates may be
   used to limit the exposure of keys in these cases.

   However, short-lived certificates need to be renewed more frequently
   than long-lived certificates.  If an external CA is unable to issue a
   certificate in time to replace a deployed certificate, the server
   would no longer be able to present a valid certificate to clients.
   With short-lived certificates, there is a smaller window of time to
   renew a certificates and therefore a higher risk that an outage at a
   CA will negatively affect the uptime of the service.

   To reduce the dependency on external CAs, this document proposes a
   limited delegation mechanism that allows a TLS peer to issue its own
   credentials within the scope of a certificate issued by an external
   CA.  These credentials only enable the recipient of the delegation to
   speak for names that the CA has authorized.  For clarity, we will
   refer to the certificate issued by the CA as a "certificate", or
   "delegation certificate", and the one issued by the operator as a
   "delegated credential" or "DC".

2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.
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2.1.  Change Log

   (*) indicates changes to the wire protocol.

   draft-09

   *  Address case nits

   *  Fix section bullets in 4.1.3.

   *  Add operational considerations section for clock skew

   *  Add text around using an oracle to forge DCs in the future and
      past

   *  Add text about certificate extension vs EKU

   draft-08

   *  Include details about the impact of signature forgery attacks

   *  Copy edits

   *  Fix section about DC reuse

   *  Incorporate feedback from Jonathan Hammell and Kevin Jacobs on the
      list

   draft-07

   *  Minor text improvements

   draft-06

   *  Modified IANA section, fixed nits

   draft-05

   *  Removed support for PKCS 1.5 RSA signature algorithms.

   *  Additional security considerations.

   draft-04

   *  Add support for client certificates.

   draft-03
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   *  Remove protocol version from the Credential structure. (*)

   draft-02

   *  Change public key type. (*)

   *  Change DelegationUsage extension to be NULL and define its object
      identifier.

   *  Drop support for TLS 1.2.

   *  Add the protocol version and credential signature algorithm to the
      Credential structure. (*)

   *  Specify undefined behavior in a few cases: when the client
      receives a DC without indicated support; when the client indicates
      the extension in an invalid protocol version; and when DCs are
      sent as extensions to certificates other than the end-entity
      certificate.

3.  Solution Overview

   A delegated credential is a digitally signed data structure with two
   semantic fields: a validity interval and a public key (along with its
   associated signature algorithm).  The signature on the credential
   indicates a delegation from the certificate that is issued to the
   peer.  The private key used to sign a credential corresponds to the
   public key of the peer’s X.509 end-entity certificate [RFC5280].

   A TLS handshake that uses delegated credentials differs from a
   standard handshake in a few important ways:

   *  The initiating peer provides an extension in its ClientHello or
      CertificateRequest that indicates support for this mechanism.

   *  The peer sending the Certificate message provides both the
      certificate chain terminating in its certificate as well as the
      delegated credential.

   *  The authenticating initiator uses information from the peer’s
      certificate to verify the delegated credential and that the peer
      is asserting an expected identity.

   *  Peers accepting the delegated credential use it as the certificate
      key for the TLS handshake

   As detailed in Section 4, the delegated credential is
   cryptographically bound to the end-entity certificate with which the
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   credential may be used.  This document specifies the use of delegated
   credentials in TLS 1.3 or later; their use in prior versions of the
   protocol is not allowed.

   Delegated credentials allow a peer to terminate TLS connections on
   behalf of the certificate owner.  If a credential is stolen, there is
   no mechanism for revoking it without revoking the certificate itself.
   To limit exposure in case of delegated credential private key
   compromise, delegated credentials have a maximum validity period.  In
   the absence of an application profile standard specifying otherwise,
   the maximum validity period is set to 7 days.  Peers MUST NOT issue
   credentials with a validity period longer than the maximum validity
   period.  This mechanism is described in detail in Section 4.1.

   It was noted in [XPROT] that certificates in use by servers that
   support outdated protocols such as SSLv2 can be used to forge
   signatures for certificates that contain the keyEncipherment KeyUsage
   ([RFC5280] section 4.2.1.3).  In order to prevent this type of cross-
   protocol attack, we define a new DelegationUsage extension to X.509
   that permits use of delegated credentials.  (See Section 4.2.)

3.1.  Rationale

   Delegated credentials present a better alternative than other
   delegation mechanisms like proxy certificates [RFC3820] for several
   reasons:

   *  There is no change needed to certificate validation at the PKI
      layer.

   *  X.509 semantics are very rich.  This can cause unintended
      consequences if a service owner creates a proxy certificate where
      the properties differ from the leaf certificate.  For this reason,
      delegated credentials have very restricted semantics that should
      not conflict with X.509 semantics.

   *  Proxy certificates rely on the certificate path building process
      to establish a binding between the proxy certificate and the
      server certificate.  Since the certificate path building process
      is not cryptographically protected, it is possible that a proxy
      certificate could be bound to another certificate with the same
      public key, with different X.509 parameters.  Delegated
      credentials, which rely on a cryptographic binding between the
      entire certificate and the delegated credential, cannot.

   *  Each delegated credential is bound to a specific signature
      algorithm that may be used to sign the TLS handshake ([RFC8446]
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      section 4.2.3).  This prevents them from being used with other,
      perhaps unintended signature algorithms.

3.2.  Related Work

   Many of the use cases for delegated credentials can also be addressed
   using purely server-side mechanisms that do not require changes to
   client behavior (e.g., a PKCS#11 interface or a remote signing
   mechanism [KEYLESS]).  These mechanisms, however, incur per-
   transaction latency, since the front-end server has to interact with
   a back-end server that holds a private key.  The mechanism proposed
   in this document allows the delegation to be done off-line, with no
   per-transaction latency.  The figure below compares the message flows
   for these two mechanisms with TLS 1.3 [RFC8446].

   Remote key signing:

   Client            Front-End            Back-End
     |----ClientHello--->|                    |
     |<---ServerHello----|                    |
     |<---Certificate----|                    |
     |                   |<---remote sign---->|
     |<---CertVerify-----|                    |
     |        ...        |                    |

   Delegated credentials:

   Client            Front-End            Back-End
     |                   |<--DC distribution->|
     |----ClientHello--->|                    |
     |<---ServerHello----|                    |
     |<---Certificate----|                    |
     |<---CertVerify-----|                    |
     |        ...        |                    |

   These two mechanisms can be complementary.  A server could use
   credentials for clients that support them, while using [KEYLESS] to
   support legacy clients.  The private key for a delegated credential
   can be used in place of a certificate private key, so it is important
   that the Front-End and Back-End are parties that have a trusted
   relationship.

   Use of short-lived certificates with automated certificate issuance,
   e.g., with Automated Certificate Managment Environment (ACME)
   [RFC8555], reduces the risk of key compromise, but has several
   limitations.  Specifically, it introduces an operationally-critical
   dependency on an external party.  It also limits the types of
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   algorithms supported for TLS authentication to those the CA is
   willing to issue a certificate for.  Nonetheless, existing automated
   issuance APIs like ACME may be useful for provisioning delegated
   credentials.

4.  Delegated Credentials

   While X.509 forbids end-entity certificates from being used as
   issuers for other certificates, it is valid to use them to issue
   other signed objects as long as the certificate contains the
   digitalSignature KeyUsage ([RFC5280] section 4.2.1.3).  We define a
   new signed object format that would encode only the semantics that
   are needed for this application.  The credential has the following
   structure:

      struct {
        uint32 valid_time;
        SignatureScheme expected_cert_verify_algorithm;
        opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
      } Credential;

   valid_time:  Time in seconds relative to the beginning of the
      delegation certificate’s notBefore value after which the delegated
      credential is no longer valid.  This MUST NOT exceed 7 days.

   expected_cert_verify_algorithm:  The signature algorithm of the
      credential key pair, where the type SignatureScheme is as defined
      in [RFC8446].  This is expected to be the same as
      CertificateVerify.algorithm sent by the server.  Only signature
      algorithms allowed for use in CertificateVerify messages are
      allowed.  When using RSA, the public key MUST NOT use the
      rsaEncryption OID, as a result, the following algorithms are not
      allowed for use with delegated credentials: rsa_pss_rsae_sha256,
      rsa_pss_rsae_sha384, rsa_pss_rsae_sha512.

   ASN1_subjectPublicKeyInfo:  The credential’s public key, a DER-
      encoded [X.690] SubjectPublicKeyInfo as defined in [RFC5280].

   The delegated credential has the following structure:

      struct {
        Credential cred;
        SignatureScheme algorithm;
        opaque signature<0..2^16-1>;
      } DelegatedCredential;

   algorithm:  The signature algorithm used to verify
      DelegatedCredential.signature.
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   signature:  The delegation, a signature that binds the credential to
      the end-entity certificate’s public key as specified below.  The
      signature scheme is specified by DelegatedCredential.algorithm.

   The signature of the DelegatedCredential is computed over the
   concatenation of:

   1.  A string that consists of octet 32 (0x20) repeated 64 times.

   2.  The context string "TLS, server delegated credentials" for
       servers and "TLS, client delegated credentials" for clients.

   3.  A single 0 byte, which serves as the separator.

   4.  The DER-encoded X.509 end-entity certificate used to sign the
       DelegatedCredential.

   5.  DelegatedCredential.cred.

   6.  DelegatedCredential.algorithm.

   The signature effectively binds the credential to the parameters of
   the handshake in which it is used.  In particular, it ensures that
   credentials are only used with the certificate and signature
   algorithm chosen by the delegator.

   The code changes required in order to create and verify delegated
   credentials, and the implementation complexity this entails, are
   localized to the TLS stack.  This has the advantage of avoiding
   changes to security-critical and often delicate PKI code.

4.1.  Client and Server Behavior

   This document defines the following TLS extension code point.

      enum {
        ...
        delegated_credential(34),
        (65535)
      } ExtensionType;

4.1.1.  Server Authentication

   A client which supports this specification SHALL send a
   "delegated_credential" extension in its ClientHello.  The body of the
   extension consists of a SignatureSchemeList:
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      struct {
        SignatureScheme supported_signature_algorithm<2..2^16-2>;
      } SignatureSchemeList;

   If the client receives a delegated credential without indicating
   support, then the client MUST abort with an "unexpected_message"
   alert.

   If the extension is present, the server MAY send a delegated
   credential; if the extension is not present, the server MUST NOT send
   a delegated credential.  The server MUST ignore the extension unless
   TLS 1.3 or a later version is negotiated.

   The server MUST send the delegated credential as an extension in the
   CertificateEntry of its end-entity certificate; the client SHOULD
   ignore delegated credentials sent as extensions to any other
   certificate.

   The expected_cert_verify_algorithm field MUST be of a type advertised
   by the client in the SignatureSchemeList and is considered invalid
   otherwise.  Clients that receive invalid delegated credentials MUST
   terminate the connection with an "illegal_parameter" alert.

4.1.2.  Client Authentication

   A server that supports this specification SHALL send a
   "delegated_credential" extension in the CertificateRequest message
   when requesting client authentication.  The body of the extension
   consists of a SignatureSchemeList.  If the server receives a
   delegated credential without indicating support in its
   CertificateRequest, then the server MUST abort with an
   "unexpected_message" alert.

   If the extension is present, the client MAY send a delegated
   credential; if the extension is not present, the client MUST NOT send
   a delegated credential.  The client MUST ignore the extension unless
   TLS 1.3 or a later version is negotiated.

   The client MUST send the delegated credential as an extension in the
   CertificateEntry of its end-entity certificate; the server SHOULD
   ignore delegated credentials sent as extensions to any other
   certificate.

   The algorithm field MUST be of a type advertised by the server in the
   "signature_algorithms" extension of the CertificateRequest message
   and the expected_cert_verify_algorithm field MUST be of a type
   advertised by the server in the SignatureSchemeList and considered
   invalid otherwise.  Servers that receive invalid delegated
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   credentials MUST terminate the connection with an "illegal_parameter"
   alert.

4.1.3.  Validating a Delegated Credential

   On receiving a delegated credential and a certificate chain, the peer
   validates the certificate chain and matches the end-entity
   certificate to the peer’s expected identity.  It also takes the
   following steps:

   1.  Verify that the current time is within the validity interval of
       the credential.  This is done by asserting that the current time
       is no more than the delegation certificate’s notBefore value plus
       DelegatedCredential.cred.valid_time.

   2.  Verify that the credential’s remaining validity time is no more
       than the maximum validity period.  This is done by asserting that
       the current time is no more than the delegation certificate’s
       notBefore value plus DelegatedCredential.cred.valid_time plus the
       maximum validity period.

   3.  Verify that expected_cert_verify_algorithm matches the scheme
       indicated in the peer’s CertificateVerify message and that the
       algorithm is allowed for use with delegated credentials.

   4.  Verify that the end-entity certificate satisfies the conditions
       in Section 4.2.

   5.  Use the public key in the peer’s end-entity certificate to verify
       the signature of the credential using the algorithm indicated by
       DelegatedCredential.algorithm.

   If one or more of these checks fail, then the delegated credential is
   deemed invalid.  Clients and servers that receive invalid delegated
   credentials MUST terminate the connection with an "illegal_parameter"
   alert.  If successful, the participant receiving the Certificate
   message uses the public key in the credential to verify the signature
   in the peer’s CertificateVerify message.

4.2.  Certificate Requirements

   We define a new X.509 extension, DelegationUsage, to be used in the
   certificate when the certificate permits the usage of delegated
   credentials.  What follows is the ASN.1 [X.680] for the
   DelegationUsage certificate extension.
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       ext-delegationUsage EXTENSION  ::= {
           SYNTAX DelegationUsage IDENTIFIED BY id-ce-delegationUsage
       }

       DelegationUsage ::= NULL

       id-ce-delegationUsage OBJECT IDENTIFIER ::=
           { iso(1) identified-organization(3) dod(6) internet(1)
             private(4) enterprise(1) id-cloudflare(44363) 44 }

   The extension MUST be marked non-critical.  (See Section 4.2 of
   [RFC5280].)  The client MUST NOT accept a delegated credential unless
   the server’s end-entity certificate satisfies the following criteria:

   *  It has the DelegationUsage extension.

   *  It has the digitalSignature KeyUsage (see the KeyUsage extension
      defined in [RFC5280]).

   A new extension was chosen instead of adding a new Extended Key Usage
   (EKU) to be compatible with deployed TLS and PKI software stacks
   without requiring CAs to issue new intermediate certificates.

5.  Operational Considerations

5.1.  Client Clock Skew

   One of the risks of deploying a short-lived credential system based
   on absolute time is client clock skew.  If a client’s clock is
   sufficiently ahead or behind of the server’s clock, then clients will
   reject credentials that are valid from the server’s perspective.
   Clock skew also affects the validity of the original certificates.
   The lifetime of the delegated credential should be set taking clock
   skew into account.  Clock skew may affect a delegated credential at
   the beginning and end of its validity periods, which should also be
   taken into account.

6.  IANA Considerations

   This document registers the "delegated_credentials" extension in the
   "TLS ExtensionType Values" registry.  The "delegated_credentials"
   extension has been assigned a code point of 34.  The IANA registry
   lists this extension as "Recommended" (i.e., "Y") and indicates that
   it may appear in the ClientHello (CH), CertificateRequest (CR), or
   Certificate (CT) messages in TLS 1.3 [RFC8446].

   This document also defines an ASN.1 module for the DelegationUsage
   certificate extension in Appendix A.  IANA is requested to register
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   an Object Identfier (OID) for the ASN.1 in "SMI Security for PKIX
   Module Identifier" arc.  An OID for the DelegationUsage certificate
   extension is not needed as it is already assigned to the extension
   from Cloudflare’s IANA Private Enterprise Number (PEN) arc.

7.  Security Considerations

7.1.  Security of Delegated Credential’s Private Key

   Delegated credentials limit the exposure of the private key used in a
   TLS connection by limiting its validity period.  An attacker who
   compromises the private key of a delegated credential can act as a
   man-in-the-middle until the delegated credential expires.  However,
   they cannot create new delegated credentials.  Thus, delegated
   credentials should not be used to send a delegation to an untrusted
   party, but is meant to be used between parties that have some trust
   relationship with each other.  The secrecy of the delegated
   credential’s private key is thus important and access control
   mechanisms SHOULD be used to protect it, including file system
   controls, physical security, or hardware security modules.

7.2.  Re-use of Delegated Credentials in Multiple Contexts

   It is not possible to use the same delegated credential for both
   client and server authentication because issuing parties compute the
   corresponding signature using a context string unique to the intended
   role (client or server).

7.3.  Revocation of Delegated Credentials

   Delegated credentials do not provide any additional form of early
   revocation.  Since it is short lived, the expiry of the delegated
   credential would revoke the credential.  Revocation of the long term
   private key that signs the delegated credential also implicitly
   revokes the delegated credential.

7.4.  Interactions with Session Resumption

   If a client decides to cache the certificate chain and re-validate it
   when resuming a connection, the client SHOULD also cache the
   associated delegated credential and re-validate it.
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7.5.  Privacy Considerations

   Delegated credentials can be valid for 7 days and it is much easier
   for a service to create delegated credential than a certificate
   signed by a CA.  A service could determine the client time and clock
   skew by creating several delegated credentials with different expiry
   timestamps and observing whether the client would accept it.  Client
   time could be unique and thus privacy sensitive clients, such as
   browsers in incognito mode, who do not trust the service might not
   want to advertise support for delegated credentials or limit the
   number of probes that a server can perform.

7.6.  The Impact of Signature Forgery Attacks

   When TLS 1.2 servers support RSA key exchange, they may be vulnerable
   to attacks that allow forging an RSA signature over an arbitrary
   message [BLEI].  TLS 1.2 [RFC5246] (Section 7.4.7.1.) describes a
   mitigation strategy requiring careful implementation of timing
   resistant countermeasures for preventing these attacks.  Experience
   shows that in practice, server implementations may fail to fully stop
   these attacks due to the complexity of this mitigation [ROBOT].  For
   TLS 1.2 servers that support RSA key exchange using a DC-enabled end-
   entity certificate, a hypothetical signature forgery attack would
   allow forging a signature over a delegated credential.  The forged
   credential could then be used by the attacker as the equivalent of a
   man-in-the-middle certificate, valid for 7 days.

   Server operators should therefore minimize the risk of using DC-
   enabled end-entity certificates where a signature forgery oracle may
   be present.  If possible, server operators may choose to use DC-
   enabled certificates only for signing credentials, and not for
   serving non-DC TLS traffic.  Furthermore, server operators may use
   elliptic curve certificates for DC-enabled traffic, while using RSA
   certificates without the DelegationUsage certificate extension for
   non-DC traffic; this completely prevents such attacks.

   Note that if a signature can be forged over an arbitrary credential,
   the attacker can choose any value for the valid_time field.  Repeated
   signature forgeries therefore allow the attacker to create multiple
   delegated credentials that can cover the entire validity period of
   the certificate.  Temporary exposure of the key or a signing oracle
   may allow the attacker to impersonate a server for the lifetime of
   the certificate.
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Appendix A.  ASN.1 Module

   The following ASN.1 module provides the complete definition of the
   DelegationUsage certificate extension.  The ASN.1 module makes
   imports from [RFC5912].
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   DelegatedCredentialExtn
     { iso(1) identified-organization(3) dod(6) internet(1)
       security(5) mechanisms(5) pkix(7) id-mod(0)
       id-mod-delegated-credential-extn(TBD) }

   DEFINITIONS IMPLICIT TAGS ::=
   BEGIN

   -- EXPORT ALL

   IMPORTS

   EXTENSION
     FROM PKIX-CommonTypes-2009 -- From RFC 5912
     { iso(1) identified-organization(3) dod(6) internet(1)
       security(5) mechanisms(5) pkix(7) id-mod(0)
       id-mod-pkixCommon-02(57) } ;

   -- OID

   id-cloudflare OBJECT IDENTIFIER ::=
     { iso(1) identified-organization(3) dod(6) internet(1) private(4)
       enterprise(1) 44363 }

   -- EXTENSION

   ext-delegationUsage EXTENSION ::=
     { SYNTAX DelegationUsage
       IDENTIFIED BY id-ce-delegationUsage }

   id-ce-delegationUsage OBJECT IDENTIFIER ::= { id-cloudflare 44 }

   DelegationUsage ::= NULL

   END
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Abstract

   The organizational separation between the operator of a TLS endpoint
   and the certification authority can create limitations.  For example,
   the lifetime of certificates, how they may be used, and the
   algorithms they support are ultimately determined by the
   certification authority.  This document describes a mechanism by
   which operators may delegate their own credentials for use in TLS,
   without breaking compatibility with peers that do not support this
   specification.

Discussion Venues

   This note is to be removed before publishing as an RFC.

   Source for this draft and an issue tracker can be found at
   https://github.com/tlswg/tls-subcerts (https://github.com/tlswg/tls-
   subcerts).

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."
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   This Internet-Draft will expire on 28 July 2021.

Copyright Notice

   Copyright (c) 2021 IETF Trust and the persons identified as the
   document authors.  All rights reserved.

   This document is subject to BCP 78 and the IETF Trust’s Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Simplified BSD License text
   as described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Simplified BSD License.
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1.  Introduction

   Typically, a TLS server uses a certificate provided by some entity
   other than the operator of the server (a "Certification Authority" or
   CA) [RFC8446] [RFC5280].  This organizational separation makes the
   TLS server operator dependent on the CA for some aspects of its
   operations, for example:

   *  Whenever the server operator wants to deploy a new certificate, it
      has to interact with the CA.

   *  The server operator can only use TLS signature schemes for which
      the CA will issue credentials.

   These dependencies cause problems in practice.  Server operators
   often deploy TLS termination services in locations such as remote
   data centers or Content Delivery Networks (CDNs) where it may be
   difficult to detect key compromises.  Short-lived certificates may be
   used to limit the exposure of keys in these cases.

   However, short-lived certificates need to be renewed more frequently
   than long-lived certificates.  If an external CA is unable to issue a
   certificate in time to replace a deployed certificate, the server
   would no longer be able to present a valid certificate to clients.
   With short-lived certificates, there is a smaller window of time to
   renew a certificates and therefore a higher risk that an outage at a
   CA will negatively affect the uptime of the service.

   To reduce the dependency on external CAs, this document proposes a
   limited delegation mechanism that allows a TLS peer to issue its own
   credentials within the scope of a certificate issued by an external
   CA.  These credentials only enable the recipient of the delegation to
   speak for names that the CA has authorized.  Furthermore, this
   mechanism allows the server to use modern signature algorithms such
   as Ed25519 [RFC8032] even if their CA does not support them.

   We will refer to the certificate issued by the CA as a "certificate",
   or "delegation certificate", and the one issued by the operator as a
   "delegated credential" or "DC".

2.  Conventions and Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.
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2.1.  Change Log

   RFC EDITOR PLEASE DELETE THIS SECTION.

   (*) indicates changes to the wire protocol.

   draft-10 * Address superficial comments * Add example certificate

   draft-09

   *  Address case nits

   *  Fix section bullets in 4.1.3.

   *  Add operational considerations section for clock skew

   *  Add text around using an oracle to forge DCs in the future and
      past

   *  Add text about certificate extension vs EKU

   draft-08

   *  Include details about the impact of signature forgery attacks

   *  Copy edits

   *  Fix section about DC reuse

   *  Incorporate feedback from Jonathan Hammell and Kevin Jacobs on the
      list

   draft-07

   *  Minor text improvements

   draft-06

   *  Modified IANA section, fixed nits

   draft-05

   *  Removed support for PKCS 1.5 RSA signature algorithms.

   *  Additional security considerations.

   draft-04
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   *  Add support for client certificates.

   draft-03

   *  Remove protocol version from the Credential structure. (*)

   draft-02

   *  Change public key type. (*)

   *  Change DelegationUsage extension to be NULL and define its object
      identifier.

   *  Drop support for TLS 1.2.

   *  Add the protocol version and credential signature algorithm to the
      Credential structure. (*)

   *  Specify undefined behavior in a few cases: when the client
      receives a DC without indicated support; when the client indicates
      the extension in an invalid protocol version; and when DCs are
      sent as extensions to certificates other than the end-entity
      certificate.

3.  Solution Overview

   A delegated credential (DC) is a digitally signed data structure with
   two semantic fields: a validity interval and a public key (along with
   its associated signature algorithm).  The signature on the delegated
   credential indicates a delegation from the certificate that is issued
   to the peer.  The private key used to sign a credential corresponds
   to the public key of the peer’s X.509 end-entity certificate
   [RFC5280].

   A TLS handshake that uses delegated credentials differs from a
   standard handshake in a few important ways:

   *  The initiating peer provides an extension in its ClientHello or
      CertificateRequest that indicates support for this mechanism.

   *  The peer sending the Certificate message provides both the
      certificate chain terminating in its certificate as well as the
      delegated credential.

   *  The authenticating initiator uses information from the peer’s
      certificate to verify the delegated credential and that the peer
      is asserting an expected identity.
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   *  Peers accepting the delegated credential use it as the certificate
      key for the TLS handshake

   As detailed in Section 4, the delegated credential is
   cryptographically bound to the end-entity certificate with which the
   credential may be used.  This document specifies the use of delegated
   credentials in TLS 1.3 or later; their use in prior versions of the
   protocol is not allowed.

   Delegated credentials allow a peer to terminate TLS connections on
   behalf of the certificate owner.  If a credential is stolen, there is
   no mechanism for revoking it without revoking the certificate itself.
   To limit exposure in case of the compromise of a delegated
   credential’s private key, delegated credentials have a maximum
   validity period.  In the absence of an application profile standard
   specifying otherwise, the maximum validity period is set to 7 days.
   Peers MUST NOT issue credentials with a validity period longer than
   the maximum validity period.  This mechanism is described in detail
   in Section 4.1.

   It was noted in [XPROT] that certificates in use by servers that
   support outdated protocols such as SSLv2 can be used to forge
   signatures for certificates that contain the keyEncipherment KeyUsage
   ([RFC5280] section 4.2.1.3).  In order to prevent this type of cross-
   protocol attack, we define a new DelegationUsage extension to X.509
   that permits use of delegated credentials.  (See Section 4.2.)

3.1.  Rationale

   Delegated credentials present a better alternative than other
   delegation mechanisms like proxy certificates [RFC3820] for several
   reasons:

   *  There is no change needed to certificate validation at the PKI
      layer.

   *  X.509 semantics are very rich.  This can cause unintended
      consequences if a service owner creates a proxy certificate where
      the properties differ from the leaf certificate.  For this reason,
      delegated credentials have very restricted semantics that should
      not conflict with X.509 semantics.

   *  Proxy certificates rely on the certificate path building process
      to establish a binding between the proxy certificate and the
      server certificate.  Since the certificate path building process
      is not cryptographically protected, it is possible that a proxy
      certificate could be bound to another certificate with the same
      public key, with different X.509 parameters.  Delegated
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      credentials, which rely on a cryptographic binding between the
      entire certificate and the delegated credential, cannot.

   *  Each delegated credential is bound to a specific signature
      algorithm for use use in the TLS handshake ([RFC8446] section
      4.2.3).  This prevents them from being used with other, perhaps
      unintended signature algorithms.

3.2.  Related Work

   Many of the use cases for delegated credentials can also be addressed
   using purely server-side mechanisms that do not require changes to
   client behavior (e.g., a PKCS#11 interface or a remote signing
   mechanism [KEYLESS]).  These mechanisms, however, incur per-
   transaction latency, since the front-end server has to interact with
   a back-end server that holds a private key.  The mechanism proposed
   in this document allows the delegation to be done off-line, with no
   per-transaction latency.  The figure below compares the message flows
   for these two mechanisms with TLS 1.3 [RFC8446].

   Remote key signing:

   Client            Front-End            Back-End
     |----ClientHello--->|                    |
     |<---ServerHello----|                    |
     |<---Certificate----|                    |
     |                   |<---remote sign---->|
     |<---CertVerify-----|                    |
     |        ...        |                    |

   Delegated Credential:

   Client            Front-End            Back-End
     |                   |<--DC distribution->|
     |----ClientHello--->|                    |
     |<---ServerHello----|                    |
     |<---Certificate----|                    |
     |<---CertVerify-----|                    |
     |        ...        |                    |

   These two mechanisms can be complementary.  A server could use
   delegated credentials for clients that support them, while using
   [KEYLESS] to support legacy clients.  The private key for a delegated
   credential can be used in place of a certificate private key, so it
   is important that the Front-End and Back-End are parties with a
   trusted relationship.
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   Use of short-lived certificates with automated certificate issuance,
   e.g., with Automated Certificate Management Environment (ACME)
   [RFC8555], reduces the risk of key compromise, but has several
   limitations.  Specifically, it introduces an operationally-critical
   dependency on an external party (the CA).  It also limits the types
   of algorithms supported for TLS authentication to those the CA is
   willing to issue a certificate for.  Nonetheless, existing automated
   issuance APIs like ACME may be useful for provisioning delegated
   credentials.

4.  Delegated Credentials

   While X.509 forbids end-entity certificates from being used as
   issuers for other certificates, it is valid to use them to issue
   other signed objects as long as the certificate contains the
   digitalSignature KeyUsage ([RFC5280] section 4.2.1.3).  We define a
   new signed object format that would encode only the semantics that
   are needed for this application.  The Credential has the following
   structure:

      struct {
        uint32 valid_time;
        SignatureScheme expected_cert_verify_algorithm;
        opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;
      } Credential;

   valid_time:  Time in seconds relative to the beginning of the
      delegation certificate’s notBefore value after which the delegated
      credential is no longer valid.  Endpoints will reject delegate
      credentials with valid_times exceeding 7 days (as described in
      Section 4.1).

   expected_cert_verify_algorithm:  The signature algorithm of the
      Credential key pair, where the type SignatureScheme is as defined
      in [RFC8446].  This is expected to be the same as the sender’s
      CertificateVerify.algorithm.  Only signature algorithms allowed
      for use in CertificateVerify messages are allowed.  When using
      RSA, the public key MUST NOT use the rsaEncryption OID.  As a
      result, the following algorithms are not allowed for use with
      delegated credentials: rsa_pss_rsae_sha256, rsa_pss_rsae_sha384,
      rsa_pss_rsae_sha512.

   ASN1_subjectPublicKeyInfo:  The Credential’s public key, a DER-
      encoded [X.690] SubjectPublicKeyInfo as defined in [RFC5280].

   The DelegatedCredential has the following structure:
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      struct {
        Credential cred;
        SignatureScheme algorithm;
        opaque signature<0..2^16-1>;
      } DelegatedCredential;

   cred:  The Credential structure as previously defined.

   algorithm:  The signature algorithm used to verify
      DelegatedCredential.signature.

   signature:  The delegation, a signature that binds the credential to
      the end-entity certificate’s public key as specified below.  The
      signature scheme is specified by DelegatedCredential.algorithm.

   The signature of the DelegatedCredential is computed over the
   concatenation of:

   1.  A string that consists of octet 32 (0x20) repeated 64 times.

   2.  The context string "TLS, server delegated credentials" for server
       authentication and "TLS, client delegated credentials" for client
       authentication.

   3.  A single 0 byte, which serves as the separator.

   4.  The DER-encoded X.509 end-entity certificate used to sign the
       DelegatedCredential.

   5.  DelegatedCredential.cred.

   6.  DelegatedCredential.algorithm.

   The signature is computed by using the private key of the peer’s end-
   entity certificate, with the algorithm indicated by
   DelegatedCredential.algorithm.

   The signature effectively binds the credential to the parameters of
   the handshake in which it is used.  In particular, it ensures that
   credentials are only used with the certificate and signature
   algorithm chosen by the delegator.

   The code changes required in order to create and verify delegated
   credentials, and the implementation complexity this entails, are
   localized to the TLS stack.  This has the advantage of avoiding
   changes to security-critical and often delicate PKI code.
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4.1.  Client and Server Behavior

   This document defines the following TLS extension code point.

      enum {
        ...
        delegated_credential(34),
        (65535)
      } ExtensionType;

4.1.1.  Server Authentication

   A client which supports this specification SHALL send a
   "delegated_credential" extension in its ClientHello.  The body of the
   extension consists of a SignatureSchemeList (defined in [RFC8446]):

      struct {
        SignatureScheme supported_signature_algorithm<2..2^16-2>;
      } SignatureSchemeList;

   If the client receives a delegated credential without indicating
   support, then the client MUST abort with an "unexpected_message"
   alert.

   If the extension is present, the server MAY send a delegated
   credential; if the extension is not present, the server MUST NOT send
   a delegated credential.  The server MUST ignore the extension unless
   TLS 1.3 or a later version is negotiated.

   The server MUST send the delegated credential as an extension in the
   CertificateEntry of its end-entity certificate; the client SHOULD
   ignore delegated credentials sent as extensions to any other
   certificate.

   The expected_cert_verify_algorithm field MUST be of a type advertised
   by the client in the SignatureSchemeList and is considered invalid
   otherwise.  Clients that receive invalid delegated credentials MUST
   terminate the connection with an "illegal_parameter" alert.

4.1.2.  Client Authentication

   A server that supports this specification SHALL send a
   "delegated_credential" extension in the CertificateRequest message
   when requesting client authentication.  The body of the extension
   consists of a SignatureSchemeList.  If the server receives a
   delegated credential without indicating support in its
   CertificateRequest, then the server MUST abort with an
   "unexpected_message" alert.
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   If the extension is present, the client MAY send a delegated
   credential; if the extension is not present, the client MUST NOT send
   a delegated credential.  The client MUST ignore the extension unless
   TLS 1.3 or a later version is negotiated.

   The client MUST send the delegated credential as an extension in the
   CertificateEntry of its end-entity certificate; the server SHOULD
   ignore delegated credentials sent as extensions to any other
   certificate.

   The algorithm field MUST be of a type advertised by the server in the
   "signature_algorithms" extension of the CertificateRequest message
   and the expected_cert_verify_algorithm field MUST be of a type
   advertised by the server in the SignatureSchemeList and considered
   invalid otherwise.  Servers that receive invalid delegated
   credentials MUST terminate the connection with an "illegal_parameter"
   alert.

4.1.3.  Validating a Delegated Credential

   On receiving a delegated credential and a certificate chain, the peer
   validates the certificate chain and matches the end-entity
   certificate to the peer’s expected identity.  It also takes the
   following steps:

   1.  Validate that DelegatedCredential.cred.valid_time is no more than
       7 days.

   2.  Verify that the current time is within the validity interval of
       the credential.  This is done by asserting that the current time
       is no more than the delegation certificate’s notBefore value plus
       DelegatedCredential.cred.valid_time.

   3.  Verify that the delegated credential’s remaining validity time is
       no more than the maximum validity period.  This is done by
       asserting that the current time is no more than the delegation
       certificate’s notBefore value plus
       DelegatedCredential.cred.valid_time plus the maximum validity
       period.

   4.  Verify that expected_cert_verify_algorithm matches the scheme
       indicated in the peer’s CertificateVerify message and that the
       algorithm is allowed for use with delegated credentials.

   5.  Verify that the end-entity certificate satisfies the conditions
       in Section 4.2.
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   6.  Use the public key in the peer’s end-entity certificate to verify
       the signature of the credential using the algorithm indicated by
       DelegatedCredential.algorithm.

   If one or more of these checks fail, then the delegated credential is
   deemed invalid.  Clients and servers that receive invalid delegated
   credentials MUST terminate the connection with an "illegal_parameter"
   alert.

   If successful, the participant receiving the Certificate message uses
   the public key in DelegatedCredential.cred to verify the signature in
   the peer’s CertificateVerify message.

4.2.  Certificate Requirements

   We define a new X.509 extension, DelegationUsage, to be used in the
   certificate when the certificate permits the usage of delegated
   credentials.  What follows is the ASN.1 [X.680] for the
   DelegationUsage certificate extension.

       ext-delegationUsage EXTENSION  ::= {
           SYNTAX DelegationUsage IDENTIFIED BY id-pe-delegationUsage
       }

       DelegationUsage ::= NULL

       id-pe-delegationUsage OBJECT IDENTIFIER ::=
           { iso(1) identified-organization(3) dod(6) internet(1)
             private(4) enterprise(1) id-cloudflare(44363) 44 }

   The extension MUST be marked non-critical.  (See Section 4.2 of
   [RFC5280].)  The client MUST NOT accept a delegated credential unless
   the server’s end-entity certificate satisfies the following criteria:

   *  It has the DelegationUsage extension.

   *  It has the digitalSignature KeyUsage (see the KeyUsage extension
      defined in [RFC5280]).

   A new extension was chosen instead of adding a new Extended Key Usage
   (EKU) to be compatible with deployed TLS and PKI software stacks
   without requiring CAs to issue new intermediate certificates.

5.  Operational Considerations
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5.1.  Client Clock Skew

   One of the risks of deploying a short-lived credential system based
   on absolute time is client clock skew.  If a client’s clock is
   sufficiently ahead or behind of the server’s clock, then clients will
   reject delegated credentials that are valid from the server’s
   perspective.  Clock skew also affects the validity of the original
   certificates.  The lifetime of the delegated credential should be set
   taking clock skew into account.  Clock skew may affect a delegated
   credential at the beginning and end of its validity periods, which
   should also be taken into account.

6.  IANA Considerations

   This document registers the "delegated_credentials" extension in the
   "TLS ExtensionType Values" registry.  The "delegated_credentials"
   extension has been assigned a code point of 34.  The IANA registry
   lists this extension as "Recommended" (i.e., "Y") and indicates that
   it may appear in the ClientHello (CH), CertificateRequest (CR), or
   Certificate (CT) messages in TLS 1.3 [RFC8446].

   This document also defines an ASN.1 module for the DelegationUsage
   certificate extension in Appendix A.  IANA has registered value 95
   for "id-mod-delegated-credential-extn" in the "SMI Security for PKIX
   Module Identifier" (1.3.5.1.5.5.7.0) registry.  An OID for the
   DelegationUsage certificate extension is not needed as it is already
   assigned to the extension from Cloudflare’s IANA Private Enterprise
   Number (PEN) arc.

7.  Security Considerations

7.1.  Security of Delegated Credential’s Private Key

   Delegated credentials limit the exposure of the private key used in a
   TLS connection by limiting its validity period.  An attacker who
   compromises the private key of a delegated credential can act as a
   man-in-the-middle until the delegated credential expires.  However,
   they cannot create new delegated credentials.  Thus, delegated
   credentials should not be used to send a delegation to an untrusted
   party, but is meant to be used between parties that have some trust
   relationship with each other.  The secrecy of the delegated
   credential’s private key is thus important and access control
   mechanisms SHOULD be used to protect it, including file system
   controls, physical security, or hardware security modules.
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7.2.  Re-use of Delegated Credentials in Multiple Contexts

   It is not possible to use the same delegated credential for both
   client and server authentication because issuing parties compute the
   corresponding signature using a context string unique to the intended
   role (client or server).

7.3.  Revocation of Delegated Credentials

   Delegated credentials do not provide any additional form of early
   revocation.  Since it is short lived, the expiry of the delegated
   credential revokes the credential.  Revocation of the long term
   private key that signs the delegated credential (from the end-entity
   certificate) also implicitly revokes the delegated credential.

7.4.  Interactions with Session Resumption

   If a client decides to cache the certificate chain and re-validate it
   when resuming a connection, the client SHOULD also cache the
   associated delegated credential and re-validate it.

7.5.  Privacy Considerations

   Delegated credentials can be valid for 7 days and it is much easier
   for a service to create delegated credentials than a certificate
   signed by a CA.  A service could determine the client time and clock
   skew by creating several delegated credentials with different expiry
   timestamps and observing whether the client would accept it.  Client
   time could be unique and thus privacy sensitive clients, such as
   browsers in incognito mode, who do not trust the service might not
   want to advertise support for delegated credentials or limit the
   number of probes that a server can perform.

7.6.  The Impact of Signature Forgery Attacks

   When TLS 1.2 servers support RSA key exchange, they may be vulnerable
   to attacks that allow forging an RSA signature over an arbitrary
   message [BLEI].  TLS 1.2 [RFC5246] (Section 7.4.7.1.) describes a
   mitigation strategy requiring careful implementation of timing
   resistant countermeasures for preventing these attacks.  Experience
   shows that in practice, server implementations may fail to fully stop
   these attacks due to the complexity of this mitigation [ROBOT].  For
   TLS 1.2 servers that support RSA key exchange using a DC-enabled end-
   entity certificate, a hypothetical signature forgery attack would
   allow forging a signature over a delegated credential.  The forged
   delegated credential could then be used by the attacker as the
   equivalent of a man-in-the-middle certificate, valid for a maximum of
   7 days.
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   Server operators should therefore minimize the risk of using DC-
   enabled end-entity certificates where a signature forgery oracle may
   be present.  If possible, server operators may choose to use DC-
   enabled certificates only for signing credentials, and not for
   serving non-DC TLS traffic.  Furthermore, server operators may use
   elliptic curve certificates for DC-enabled traffic, while using RSA
   certificates without the DelegationUsage certificate extension for
   non-DC traffic; this completely prevents such attacks.

   Note that if a signature can be forged over an arbitrary credential,
   the attacker can choose any value for the valid_time field.  Repeated
   signature forgeries therefore allow the attacker to create multiple
   delegated credentials that can cover the entire validity period of
   the certificate.  Temporary exposure of the key or a signing oracle
   may allow the attacker to impersonate a server for the lifetime of
   the certificate.
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Appendix A.  ASN.1 Module

   The following ASN.1 module provides the complete definition of the
   DelegationUsage certificate extension.  The ASN.1 module makes
   imports from [RFC5912].

   DelegatedCredentialExtn
     { iso(1) identified-organization(3) dod(6) internet(1)
       security(5) mechanisms(5) pkix(7) id-mod(0)
       id-mod-delegated-credential-extn(TBD) }

   DEFINITIONS IMPLICIT TAGS ::=
   BEGIN

   -- EXPORT ALL

   IMPORTS

   EXTENSION
     FROM PKIX-CommonTypes-2009 -- From RFC 5912
     { iso(1) identified-organization(3) dod(6) internet(1)
       security(5) mechanisms(5) pkix(7) id-mod(0)
       id-mod-pkixCommon-02(57) } ;

   -- OID

   id-cloudflare OBJECT IDENTIFIER ::=
     { iso(1) identified-organization(3) dod(6) internet(1) private(4)
       enterprise(1) 44363 }

   -- EXTENSION

   ext-delegationUsage EXTENSION ::=
     { SYNTAX DelegationUsage
       IDENTIFIED BY id-pe-delegationUsage }

   id-pe-delegationUsage OBJECT IDENTIFIER ::= { id-cloudflare 44 }

   DelegationUsage ::= NULL

   END
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Appendix B.  Example Certificate

   The following certificate has the Delegated Credentials OID.

   -----BEGIN CERTIFICATE-----
   MIIFRjCCBMugAwIBAgIQDGevB+lY0o/OecHFSJ6YnTAKBggqhkjOPQQDAzBMMQsw
   CQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMSYwJAYDVQQDEx1EaWdp
   Q2VydCBFQ0MgU2VjdXJlIFNlcnZlciBDQTAeFw0xOTAzMjYwMDAwMDBaFw0yMTAz
   MzAxMjAwMDBaMGoxCzAJBgNVBAYTAlVTMRMwEQYDVQQIEwpDYWxpZm9ybmlhMRYw
   FAYDVQQHEw1TYW4gRnJhbmNpc2NvMRkwFwYDVQQKExBDbG91ZGZsYXJlLCBJbmMu
   MRMwEQYDVQQDEwprYzJrZG0uY29tMFkwEwYHKoZIzj0CAQYIKoZIzj0DAQcDQgAE
   d4azI83Bw0fcPgfoeiZpZZnwGuxjBjv++wzE0zAj8vNiUkKxOWSQiGNLn+xlWUpL
   lw9djRN1rLmVmn2gb9GgdKOCA28wggNrMB8GA1UdIwQYMBaAFKOd5h/52jlPwG7o
   kcuVpdox4gqfMB0GA1UdDgQWBBSfcb7fS3fUFAyB91fRcwoDPtgtJjAjBgNVHREE
   HDAaggprYzJrZG0uY29tggwqLmtjMmtkbS5jb20wDgYDVR0PAQH/BAQDAgeAMB0G
   A1UdJQQWMBQGCCsGAQUFBwMBBggrBgEFBQcDAjBpBgNVHR8EYjBgMC6gLKAqhiho
   dHRwOi8vY3JsMy5kaWdpY2VydC5jb20vc3NjYS1lY2MtZzEuY3JsMC6gLKAqhiho
   dHRwOi8vY3JsNC5kaWdpY2VydC5jb20vc3NjYS1lY2MtZzEuY3JsMEwGA1UdIARF
   MEMwNwYJYIZIAYb9bAEBMCowKAYIKwYBBQUHAgEWHGh0dHBzOi8vd3d3LmRpZ2lj
   ZXJ0LmNvbS9DUFMwCAYGZ4EMAQICMHsGCCsGAQUFBwEBBG8wbTAkBggrBgEFBQcw
   AYYYaHR0cDovL29jc3AuZGlnaWNlcnQuY29tMEUGCCsGAQUFBzAChjlodHRwOi8v
   Y2FjZXJ0cy5kaWdpY2VydC5jb20vRGlnaUNlcnRFQ0NTZWN1cmVTZXJ2ZXJDQS5j
   cnQwDAYDVR0TAQH/BAIwADAPBgkrBgEEAYLaSywEAgUAMIIBfgYKKwYBBAHWeQIE
   AgSCAW4EggFqAWgAdgC72d+8H4pxtZOUI5eqkntHOFeVCqtS6BqQlmQ2jh7RhQAA
   AWm5hYJ5AAAEAwBHMEUCICiGfq+hSThRL2m8H0awoDR8OpnEHNkF0nI6nL5yYL/j
   AiEAxwebGs/T6Es0YarPzoQJrVZqk+sHH/t+jrSrKd5TDjcAdgCHdb/nWXz4jEOZ
   X73zbv9WjUdWNv9KtWDBtOr/XqCDDwAAAWm5hYNgAAAEAwBHMEUCIQD9OWA8KGL6
   bxDKfgIleHJWB0iWieRs88VgJyfAg/aFDgIgQ/OsdSF9XOy1foqge0DTDM2FExuw
   0JR0AGZWXoNtJzMAdgBElGUusO7Or8RAB9io/ijA2uaCvtjLMbU/0zOWtbaBqAAA
   AWm5hYHgAAAEAwBHMEUCIQC4vua1n3BqthEqpA/VBTcsNwMtAwpCuac2IhJ9wx6X
   /AIgb+o00k28JQo9TMpP4vzJ3BD3HXWSNc2Zizbq7mkUQYMwCgYIKoZIzj0EAwMD
   aQAwZgIxAJsX7d0SuA8ddf/m7IWfNfs3MQfJyGkEezMJX1t6sRso5z50SS12LpXe
   muGa1FE2ZgIxAL+CDUF5pz7mhrAEIjQ1MqlpF9tH40dJGvYZZQ3W23cMzSkDfvlt
   y5S4RfWHIIPjbw==
   -----END CERTIFICATE-----
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Abstract

   A number of extensions are proposed in the TLS working group that

   carry no interesting information except the 1-bit indication that a

   certain optional feature is supported.  Such extensions take 4 octets

   each.  This document defines a flags extension that can provide such

   indications at an average marginal cost of 1 bit each.  More

   precisely, it provides as many flag extensions as needed at 4 + the

   order of the last set bit divided by 8.
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   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."
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1.  Introduction

   Since the publication of TLS 1.3 ([RFC8446]) there have been several

   proposals for extensions to this protocol, where the presence of the

   content-free extension in both the ClientHello and either the

   ServerHello or EncryptedExtensions indicates nothing except either

   support for the optional feature or an intent to use the optional

   feature.  Examples:

   o  An extension that allows the server to tell the client that cross-

      SNI resumption is allowed: [I-D.sy-tls-resumption-group].

   o  An extension that is used to negotiate support for authentication

      using both certificates and external PSKs:

      [I-D.ietf-tls-tls13-cert-with-extern-psk].

   o  The post_handshake_auth extension from the TLS 1.3 base document

      indicates that the client is willing to perform post-handshake

      authentication.

   This document proposes a single extension called tls_flags that can

   enumerate such flag extensions and allowing both client and server to

   indicate support for optional features in a concise way.

   None of the current proposed extensions are such that the server

   indicates support without the client first indicating support.  This

   specification enforces this restriction by specifying in Section 3

   that server bits may only reflect flags for which the client

   extension has already indicated support.
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1.1.  Requirements and Other Notation

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this

   document are to be interpreted as described in BCP 14 [RFC2119]

   [RFC8174] when, and only when, they appear in all capitals, as shown

   here.

   The term "flag extension" is used to denote an extension where the

   extension_data field is always zero-length in a particular context,

   and the presence of the extension denotes either support for some

   feature or the intent to use that feature.

   The term "flag-type feature" denotes an options TLS 1.3 feature the

   support for which is negotiated using a flag extension, whether that

   flag extension is its own extension or a value in the extension

   defined in this document.

2.  The tls_flags Extension

   This document defines the following extension code point:

      enum {

         ...

         tls_flags(TBD),

         (65535)

      } ExtensionType;

   This document also defines the data for this extension as a variable-

   length bit string, allowing for the encoding of up to 2040 features.

      struct {

         opaque flags<0..255>;

      } FlagExtensions;

   The FlagExtensions field 8 flags with each octet, and its length is

   the minimal length that allows it to encode all of the present flags.

   Within each octet, the bits are packed such that the first bit is the

   LSB and the seventh bit is the MSB.  The first octet holds flags 0-7,

   the second octet holds bits 8-15 and so on.  For example, if we want

   to encode only flag number zero, the FlagExtension field will be 1

   octet long, that is encoded as follows:

      00000001

   If we want to encode flags 1 and 5, the field will still be 1 octet

   long:
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      00100010

   If we want to encode flags 3, 5, and 23, the field will have to be 3

   octets long:

      00101000 00000000 10000000

   An implementation that receives an all-zero value for this extension

   or a value that contains trailing zero bytes MUST generate a fatal

   illegal_parameter alert.

   Note that this document does not define any particular bits for this

   string.  That is left to the protocol documents such as the ones in

   the examples from the previous section.  Such documents will have to

   define which bit to set to show support, and the order of the bits

   within the bit string shall be enumerated in network order: bit zero

   is the high-order bit of the first octet as the flags field is

   transmitted.

3.  Rules for The Flags Extension

   A client that supports this extension and at least one flag extension

   SHALL send this extension with the flags field having bits set only

   for those extensions that it intends to set.  It MUST NOT send this

   extension with a length of zero.

   A server that supports this extension and also supports at least one

   of the flag-type features that use this extension and that were

   declared by the ClientHello extension SHALL send this extension with

   the intersection of the flags it supports with the flags declared by

   the client.  The intersection operation MAY be implemented as a

   bitwise AND.  The server may need to send two tls_flags extensions,

   one in the ServerHello and the other in the EncryptedExtensions

   message.  It is up to the document for the specific feature to

   determine whether support should be acknowledged in the ServerHello

   or the EncryptedExtensions message.

   A server MUST NOT indicate support for any flag-type feature not

   previously indicated by the client.  It MUST NOT include this

   extension in either message (ServerHello or EncryptedExtensions) if

   it has no appropriate flag-type to indicate.  This extension MUST NOT

   be included empty.

4.  IANA Considerations

   IANA is requested to assign a new value from the TLS ExtensionType

   Values registry:
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   o  The Extension Name should be tls_flags

   o  The TLS 1.3 value should be CH,SH,EE

   o  The Recommended value should be Y

   o  The Reference should be this document

   IANA is also requested to create a new registry under the TLS

   namespace with name "TLS Flags" and the following fields:

   o  Value, which is a number between 0 and 2039.  All potential values

      are available for assignment.

   o  Flag Name, which is a string

   o  Message, which like the "TLS 1.3" field in the ExtensionType

      registry contains the abbreviations of the messages that may

      contain the flag: CH, SH, EE, etc.

   o  Recommended, which is a Y/N value determined in the document

      defining the optional feature.

   o  Reference, which is a link to the document defining this flag.

   The policy for this shall be "Specification Required" as described in

   [RFC8126].

4.1.  Guidance for IANA Experts

   This extension allows up to 2040 flags.  However, they are not all

   the same, because the length of the extension is determined by the

   highest set bit.

   We would like to allocate the flags in such a way that the typical

   extension is as short as possible.  The scenario we want to guard

   against is that in a few years some extension is defined that all

   implementations need to support and that is assigned a high number

   because all of the lower numbers have already been allocated.  An

   example of such an extension is the Renegotiation Indication

   Extension defined in [RFC5746].

   For this reason, the IANA experts should allocate the flags as

   follows:

   o  Flags 0-7 are reserved for documents coming out of the TLS working

      group with a specific request to assign a low number.
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   o  Flags 8-31 are for standards-track documents that the experts

      believe will see wide adoption among either all users of TLS or a

      significant group of TLS users.  For example, an extension that

      will be used by all web clients or all smart objects.

   o  Flags 32-63 are for other documents, including experimental, that

      are likely to see significant adoption.

   o  Flags 64-79 are not to be allocated.  They are for reserved for

      private use.

   o  Flags 80-2039 can be used for temporary allocation in experiments,

      for flags that are likely to see use only in very specific

      environments, for national and corporate extensions, and as

      overflow, in case one of the previous categories has been

      exhausted.

5.  Security Considerations

   The extension described in this document provides a more concise way

   to express data that could otherwise be expressed in individual

   extensions.  It does not send in the clear any information that would

   otherwise be sent encrypted, nor vice versa.  For this reason this

   extension is neutral as far as security is concerned.
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1.  Introduction

   Introducing additional key material into the TLS handshake is a non-
   trivial process because both parties need to agree on the injection
   content and context.  If the two parties do not agree then an
   attacker may exploit the mismatch in so-called channel
   synchronization attacks.

   Injecting key material into the TLS handshake allows other protocols
   to be bound to the handshake.  For example, it may provide additional
   protections to the ClientHello message, which in the standard TLS
   handshake only receives protections after the server’s Finished
   message has been received.  It may also permit the use of combined
   shared secrets, possibly from multiple key exchange algorithms, to be
   included in the key schedule.  This pattern is common for Post
   Quantum key exchange algorithms, as discussed in
   [I-D.stebila-tls-hybrid-design].
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2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Key Schedule Extension

   This section describes two places in which additional secrets can be
   injected into the TLS 1.3 key schedule.

3.1.  Handshake Secret Injection

   To inject key material into the Handshake Secret it is recommended to
   use an extra derive secret.

                |
                v
          Derive-Secret(., "derived early", "")
                |
                v
       Input -> HKDF-Extract
                |
                v
          Derive-Secret(., "derived", "")
                |
                v
     (EC)DHE -> HKDF-Extract = Handshake Secret
                |
                v

   As shown in the figure above, the key schedule has an extra derive
   secret and HKDF-Extract step.  This extra step isolates the Input
   material from the rest of the handshake secret, such that even
   maliciously chosen values cannot weaken the security of the key
   schedule overall.

   The additional Derive-Secret with the "derived early" label enforces
   the separation of the key schedule from vanilla TLS handshakes,
   because HKDFs can be assumed to ensure that keys derived with
   different labels are independent.

3.2.  Master Secret Injection

   To inject key material into the Master Secret it is recommended to
   use an extra derive secret.
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                |
                v
          Derive-Secret(., "derived early", "")
                |
                v
       Input -> HKDF-Extract
                |
                v
          Derive-Secret(., "derived", "")
                |
                v
       0 -> HKDF-Extract = Master Secret
                |
                v

   This structrue mirrors the Handshake Injection point, the key
   schedule has an extra Extract, Derive-Secret pattern.  This, again,
   should isolate the Input material from the rest of the Master Secret.

4.  Key Schedule Extension Structure

   In some cases, protocols may require more than one secret to be
   injected at a particular stage in the key schedule.  Thus, we require
   a generic and extensible way of doing so.  To accomplish this, we use
   a structure - KeyScheduleInput - that encodes well-ordered sequences
   of secret material to inject into the key schedule.  KeyScheduleInput
   is defined as follows:

   struct {
       KeyScheduleSecretType type;
       opaque secret_data<0..2^16-1>;
   } KeyScheduleSecret;

   enum {
       (65535)
   } KeyScheduleSecretType;

   struct {
       KeyScheduleSecret secrets<0..2^16-1>;
   } KeyScheduleInput;

   Each secret included in a KeyScheduleInput structure has a type and
   corresponding secret data.  Each secret MUST have a unique
   KeyScheduleSecretType.  When encoding KeyScheduleInput as the key
   schedule Input value, the KeyScheduleSecret values MUST be in
   ascending sorted order.  This ensures that endpoints always encode
   the same KeyScheduleInput value when using the same secret keying
   material.
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5.  Security Considerations

   [[OPEN ISSUE: This draft has not seen any security analysis.]]

6.  IANA Considerations

   [[TODO: define secret registry structure]]
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1.  Introduction

   Introducing additional key material into the TLS handshake is a non-
   trivial process because both parties need to agree on the injection
   content and context.  If the two parties do not agree then an
   attacker may exploit the mismatch in so-called channel
   synchronization attacks, such as those described by [SLOTH].

   Injecting key material into the TLS handshake allows other protocols
   to be bound to the handshake.  For example, it may provide additional
   protections to the ClientHello message, which in the standard TLS
   handshake only receives protections after the server’s Finished
   message has been received.  It may also permit the use of combined
   shared secrets, possibly from multiple key exchange algorithms, to be
   included in the key schedule.  This pattern is common for Post
   Quantum key exchange algorithms, as discussed in
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   [I-D.ietf-tls-hybrid-design].  In particular,
   [I-D.ietf-tls-hybrid-design] uses the concatenation pattern described
   in this draft, but does not add the requisite framing.

   The goal of this document is to provide a standardised way for
   binding extra context into TLS 1.3 handshakes in a way that is easy
   to analyse from a security perspective, reducing the need for
   security analysis of extensions that affect the key schedule.  It
   separates the concerns of whether an extension achieves its goals
   from the concerns of whether an extension reduces the security of a
   TLS handshake, either directly or through some unforseen interaction
   with another extension.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

3.  Key Schedule Extension

   This section describes two places in which additional secrets can be
   injected into the TLS 1.3 key schedule.

3.1.  Handshake Secret Injection

   To inject extra key material into the Handshake Secret it is
   recommended to prefix it, inside an appropriate frame, to the
   "(EC)DHE" input, where "||" represents concatenation.

                                    |
                                    v
                              Derive-Secret(., "derived", "")
                                    |
                                    v
     KeyScheduleInput || (EC)DHE -> HKDF-Extract = Handshake Secret
                                    |
                                    v

3.2.  Main Secret Injection

   To inject key material into the Main Secret it is recommended to
   prefix it, inside an appropriate frame, to the "0" input.
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                              |
                              v
                        Derive-Secret(., "derived", "")
                              |
                              v
     KeyScheduleInput || 0 -> HKDF-Extract = Main Secret
                              |
                              v

   This structure mirrors the Handshake Injection point.

4.  Key Schedule Injection Negotiation

   Applications which make use of additional key schedule inputs MUST
   define a mechanism for negotiating the content and type of that
   input.  This input MUST be framed in a KeyScheduleSecret struct, as
   defined in Section 5.  Applications must take care that any
   negotiation that takes place unambiguously agrees a secret.  It must
   be impossible, even under adversarial conditions, that a client and
   server agree on the transcript of the negotiation, but disagree on
   the secret that was negotiated.

5.  Key Schedule Extension Structure

   In some cases, protocols may require more than one secret to be
   injected at a particular stage in the key schedule.  Thus, we require
   a generic and extensible way of doing so.  To accomplish this, we use
   a structure - KeyScheduleInput - that encodes well-ordered sequences
   of secret material to inject into the key schedule.  KeyScheduleInput
   is defined as follows:

   struct {
       KeyScheduleSecretType type;
       opaque secret_data<0..2^16-1>;
   } KeyScheduleSecret;

   enum {
       (65535)
   } KeyScheduleSecretType;

   struct {
       KeyScheduleSecret secrets<0..2^16-1>;
   } KeyScheduleInput;

   Each secret included in a KeyScheduleInput structure has a type and
   corresponding secret data.  Each secret MUST have a unique
   KeyScheduleSecretType.  When encoding KeyScheduleInput as the key
   schedule Input value, the KeyScheduleSecret values MUST be in
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   ascending sorted order.  This ensures that endpoints always encode
   the same KeyScheduleInput value when using the same secret keying
   material.

6.  Security Considerations

   [BINDEL] provides a proof that the concatenation approach in
   Section 3 is secure as long as either the concatenated secret is
   secure or the existing KDF input is secure.

   [[OPEN ISSUE: Is this guarantee sufficient?  Do we also need to
   guarantee that a malicious prefix can’t weaken the resulting PRF
   output?]]

7.  IANA Considerations

   This document requests the creation of a new IANA registry: TLS
   KeyScheduleInput Types.  This registry should be under the existing
   Transport Layer Security (TLS) Parameters heading.  It should be
   administered under a Specification Required policy [RFC8126].

   [[OPEN ISSUE: specify initial registry values]]

               +=======+=============+=========+===========+
               | Value | Description | DTLS-OK | Reference |
               +=======+=============+=========+===========+
               | TBD   | TBD         | TBD     | TBD       |
               +-------+-------------+---------+-----------+

                                  Table 1
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Appendix A.  Potential Use Cases

   The draft provides a mechanism for importing additional information
   into the TLS key schedule.  Future applications and specifications
   can use this mechanism to layer TLS on to other protocols, as opposed
   to layering other protocols over TLS.  For example, as discussed in
   Section 1, this can be used for hybrid key exchange, which, in
   effect, is layering TLS over a secondary AKE.  Although the key
   exchanges are interleaved, the post-quantum AKE completes first, as
   demonstrated by its output key being used as an input for computing
   TLS’s master secret.
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   This can also be used in more direct ways, such as bootstrapping EAP-
   TLS as in [I-D.friel-tls-eap-dpp].  This draft also allows for more
   direct implementations of things such as semi-static DH
   [I-D.ietf-tls-semistatic-dh].  The aim of this draft is to be
   sufficiently flexible that it can be used as the basis for layering
   TLS on top of any protocol that outputs a secure channel binding,
   where secure is defined by the goals of the overall layered protocol.
   This draft does not provide security itself, it simply provides a
   standard format for layering.
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   protocol even where protocol options are incompatible.  This

   supplements application-layer protocol negotiation, which allows

   choices between compatible protocols to be authenticated.

Discussion Venues

   This note is to be removed before publishing as an RFC.

   Discussion of this document takes place on the TLS Working Group

   mailing list (tls@ietf.org), which is archived at

   https://mailarchive.ietf.org/arch/browse/tls/.

   Source for this draft and an issue tracker can be found at

   https://github.com/martinthomson/snip.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the

   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering

   Task Force (IETF).  Note that other groups may also distribute

   working documents as Internet-Drafts.  The list of current Internet-

   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months

   and may be updated, replaced, or obsoleted by other documents at any

   time.  It is inappropriate to use Internet-Drafts as reference

   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 14 January 2021.
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1.  Introduction

   With increased diversity in protocol choice, some applications are

   able to use one of several semantically-equivalent protocols to

   achieve their goals.  This is particularly notable in HTTP where

   there are currently three distinct protocols: HTTP/1.1 [HTTP11],

   HTTP/2 [HTTP2], and HTTP/3 [HTTP3].  This is also true for protocols

   that support variants based on both TLS [TLS] and DTLS [DTLS].

   For protocols that are mutually compatible, Application-Layer

   Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

   negotiate protocol selection.
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   In ALPN, the client offers a list of options in a TLS ClientHello and

   the server chooses the option that it most prefers.  A downgrade

   attack occurs where both client and server support a protocol that

   the server prefers more than than the selected protocol.  ALPN

   protects against this attack by ensuring that the server is aware of

   all options the client supports and including those options and the

   server choice under the integrity protection provided by the TLS

   handshake.

   This downgrade protection functions because protocol negotiation is

   part of the TLS handshake.  The introduction of semantically-

   equivalent protocols that use incompatible handshakes introduces new

   opportunities for downgrade attack.  For instance, it is not possible

   to negotiate the use of HTTP/2 based on an attempt to connect using

   HTTP/3.  The former relies on TCP, whereas the latter uses UDP.

   These protocols are therefore mutually incompatible.

   This document defines an extension to TLS that allows clients to

   discover when servers support alternative protocols that are

   incompatible with the currently-selected TLS version.  This might be

   used to avoid downgrade attack caused by interference in protocol

   discovery mechanisms.

   This extension is motivated by the addition of new mechanisms, such

   as [SVCB].  SVCB enables the discovery of servers that support

   multiple different protocols, some of which are incompatible.  The

   extension can also be used to authenticate protocol choices that are

   discovered by other means.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in

   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

   Two protocols are consider "compatible" if it is possible to

   negotiate either using the same connection attempt.  In comparison,

   protocols are "incompatible" if they require separate attempts to

   establish a connection.
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3.  Incompatible Protocols and SVCB

   The SVCB record [SVCB] allows a client to learn about services

   associated with a domain name.  This includes how to locate a server,

   along with supplementary information about the server, including

   protocols that the server supports.  This allows a client to start

   using a protocol of their choice without added latency, as the lookup

   can be performed concurrently with other name resolution.  The added

   cost of the additional DNS queries is minimal.

   However, SVCB provides no protection against a downgrade attack

   between incompatible protocols.  An attacker could remove DNS records

   for client-preferred protocols, leaving the client to believe that

   only less-prefered, mutually-incompatible options are available.  The

   client only offers compatible options to a server in its TLS

   handshake.  Even if a client were to inform the server that it

   supports a more preferred protocol, the server would not be able to

   act upon it.

   Authenticating all of the information presented in SVCB records might

   provide clients with complete information about server support, but

   this is impractical for several reasons:

   *  it is not possible to ensure that all server instances in a

      deployment have the same protocol configuration, as deployments

      for a single name routinely include multiple providers that cannot

      coordinate closely;

   *  the ability to provide a subset of valid DNS records is integral

      to many strategies for managing servers; and

   *  it is difficult to ensure that cached DNS records are synchronized

      with server state.

   Overall, an authenticated TLS handshake is a better source of

   authoritative information about the protocols that are supported.

4.  Authenticating Incompatible Protocols

   The incompatible_protocols(TBD) TLS extension provides clients with

   information about the incompatible protocols that are supported by

   servers.

   enum {

       incompatible_protocols(TBD), (65535)

   } ExtensionType;
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   A client that supports the extension advertises an empty extension.

   In response, a server that supports this extension includes a list of

   application protocol identifiers.  The "extension_data" field of the

   value server extension uses the "ProtocolNameList" format defined in

   [ALPN].  This syntax is shown in Figure 1.

   struct {

     select (Handshake.msg_type) {

       case client_hello:

         Empty;

       case encrypted_extensions:

         ProtocolNameList incompatible_protocols;

     };

   } IncompatibleProtocols;

         Figure 1: TLS Syntax for incompatible_protocols Extension

   This extension only applies to the ClientHello and

   EncryptedExtensions messages.  An implementation that receives this

   extension in any other handshake message MUST send a fatal

   illegal_parameter alert.

   A server deployment that supports multiple incompatible protocols MAY

   advertise all protocols that are supported.  A server MAY limit this

   to protocols that it considers to have similar semantics to protocols

   that the client lists in its application_layer_protocol_negotiation

   extension.

   The definition of what a server includes is intentionally loose.  It

   is better that a server offer more information than less as the needs

   of a client are not necessarily well reflected in its ALPN extension.

   However, it is not reasonable to require that a server advertise all

   potential protocols as that is unlikely to be practical.

   A server MUST omit any compatible protocols from this extension on

   the understanding that the client will include compatible protocols

   in the application_layer_protocol_negotiation extension.

   A server needs to ensure that protocols advertised in this fashion

   are available to the client within the same protocol authentication

   scope.

5.  Protocol Authentication Scope

   The protocol authentication scope is the set of protocol endpoints at

   a server that share a protocol configuration.  A client learns of

   this scope as part of the process it follows to discover the server.

Thomson                  Expires 14 January 2021                [Page 5]



Internet-Draft    Authenticating Incompatible Protocols        July 2020

   By default, the protocol authentication scope is a single protocol

   endpoint.  The default protocol authentication scope offers no means

   to authenticate incompatible protocols as it is not possible for a

   client to access any endpoint that supports those protocols.  A

   client cannot use information from the incompatible_protocols

   extension unless a wider scope is used.

   [[TODO: This likely needs some discussion.]]

5.1.  SVCB Discovery Scope

   For SVCB records, the protocol authentication scope is defined by the

   set of ServiceForm SVCB records with the same SvcDomainName.

   This ensures that the final choice a client makes between ServiceForm

   SVCB records is protected by this extension.  If the client does not

   receive a SVCB record for a protocol that the server includes in its

   incompatible_protocols extension, then it can assume that this

   omission was caused by an error or attack.

   Thus, for SVCB, a choice between AliasForm records (or CNAME or DNAME

   records) is not authenticated, but choices between ServiceForm

   records is.  This allows for server deployments for the same name to

   have different administrative control and protocol configurations.

5.2.  QUIC Version Negotiation

   TODO: define how this can be used to authenticate protocol choices

   where there are incompatible QUIC versions.

5.3.  Alternative Services

   It is possible to negotiate protocols based on an established

   connection without exposure to downgrade.  The Alternative Services

   [ALTSVC] bootstrapping in HTTP/3 does just that.  Assuming that

   HTTP/2 or HTTP/1.1 are not vulnerable to attacks that would

   compromise integrity, a server can advertise the presence of an

   endpoint that supports HTTP/3.

   Under these assumptions Alternative Services is secure, but it has

   performance trade-offs.  A client could attempt the protocol it

   prefers most, but that comes at a risk that this protocol is not

   supported by a server.  A client could implement a fallback, which

   might even be performed concurrently (see [HAPPY-EYEBALLS]), but this

   costs time and resources.  A client avoids these costs by attempting

   the protocol it believes to be most widely supported, though this

   comes with a performance penalty in cases where the most-preferred

   protocol is supported.
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   A server that is discovered using Alternative Services uses the

   default protocol authentication scope.  As use of Alternative

   Services is discretionary for both client and server, a client cannot

   expect to receive information about incompatible protocols.  To avoid

   downgrade, a client only has to avoid using an Alternative Service

   that offers a less-preferred protocol.

5.4.  Scope for Other Discovery Methods

   For other discovery methods, a definition for protocol authentication

   scope is needed before a client can act on what is learned using the

   incompatible_protocols extension.  That definition needs to define

   how to discover server instances that support all incompatible

   protocols in the scope.

   In particular, a server that is discovered using forms of DNS-based

   name resolution other than SVCB uses the default protocol

   authentication scope.  This discovery method does not provide enough

   information to locate other incompatible protocols.

   For instance, an HTTPS server that is discovered using purely A or

   AAAA records (and CNAME or DNAME records) might advertise support for

   incompatible protocols, but as there is no way to determine where

   those protocols are supported, a client cannot act on the

   information.  Note that Alternative Services do not change the

   protocol authentication scope.

   Deployments of discovery methods that define a protocol

   authentication scope larger than the default need to ensure that

   every server provides information that is consistent with every

   protocol authentication scope that includes that server.  A server

   that fails to indicate support for a protocol that is within a

   protocol authentication scope does not offer any protection against

   attack; a server that advertises a protocol that the client cannot

   discover risks this misconfiguration being identified as an attack by

   clients.

6.  Incompatible Protocol Selection

   This represents a different model for protocol selection than the one

   used by ALPN.  In ALPN, the client presents a set of (compatible)

   options and the server chooses its most preferred.

   In comparison, as the client makes a selection between incompatible

   protocols before making a connection attempt, this design only

   provides the client with information about other incompatible

   protocols that the server might support.  Any choice to attempt a

   connection using those protocols is left to the client.
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   In summary:

   *  For compatible protocols, the server chooses

   *  For incompatible protocols, the client chooses

   Detecting a potential downgrade between incompatible protocols does

   not automatically imply that a client abandon a connection attempt.

   This is left to client policy.

   For a protocol like HTTP/3, this might not result in the client

   choosing to use HTTP/3, even if the server prefers that protocol.

   Blocking of UDP or QUIC is known to be widespread.  As a result,

   clients might adopt a policy of tolerating a downgrade to a TCP-based

   protocol, even if HTTP/3 were preferred.  However, as blocking of UDP

   is highly correlated by access network, clients that are able to

   establish HTTP/3 connections to some servers might choose to apply a

   stricter response when a server that indicates HTTP/3 support is

   unreachable.

7.  Security Considerations

   This design depends on the integrity of the TLS handshake across all

   forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS].  An

   attacker that can modify a TLS handshake in any one of these

   protocols can cause a client to believe that other options do not

   exist.

   A server deployment that uses AliasForm SVCB records and does not

   uniformly support a client-preferred protocol is vulnerable to

   downgrade attacks that steer clients toward instances that lack

   support for that protocol.  This attack is ineffective for protocols

   that are consistently supported by all server instances.

8.  IANA Considerations

   TODO: register the extension
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1.  Introduction

   With increased diversity in protocol choice, some applications are

   able to use one of several semantically-equivalent protocols to

   achieve their goals.  This is particularly notable in HTTP where

   there are currently three distinct protocols: HTTP/1.1 [HTTP11],

   HTTP/2 [HTTP2], and HTTP/3 [HTTP3].  This is also true of protocols

   that support variants based on both TLS [TLS] and DTLS [DTLS].

   For protocols that are mutually compatible, Application-Layer

   Protocol Negotiation (ALPN; [ALPN]) provides a secure way to

   negotiate protocol selection.
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   In ALPN, the client offers a list of options in a TLS ClientHello and

   the server chooses the option that it most prefers.  A downgrade

   attack occurs where both client and server support a protocol that

   the server prefers more than than the selected protocol.  ALPN

   protects against this attack by ensuring that the server is aware of

   all options the client supports and including those options and the

   server choice under the integrity protection provided by the TLS

   handshake.

   This downgrade protection functions because protocol negotiation is

   part of the TLS handshake.  The introduction of semantically-

   equivalent protocols that use incompatible handshakes introduces new

   opportunities for downgrade attack.  For instance, it is not possible

   to negotiate the use of HTTP/2 based on an attempt to connect using

   HTTP/3.  The former relies on TCP, whereas the latter uses UDP.

   These protocols are therefore mutually incompatible.

   This document defines an extension to TLS that allows clients to

   discover when servers support alternative protocols that are

   incompatible with the currently-selected TLS version.  This might be

   used to avoid downgrade attack caused by interference in protocol

   discovery mechanisms.

   This extension is motivated by the addition of new mechanisms, such

   as [SVCB].  SVCB enables the discovery of servers that support

   multiple different protocols, some of which are incompatible.  The

   extension can also be used to authenticate protocol choices that are

   discovered by other means.

2.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in

   BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

   Two protocols are consider "compatible" if it is possible to

   negotiate either using the same connection attempt.  In comparison,

   protocols are "incompatible" if they require separate attempts to

   establish a connection.
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3.  Incompatible Protocols and SVCB

   The SVCB record [SVCB] allows a client to learn about services

   associated with a domain name.  This includes how to locate a server,

   along with supplementary information about the server, including

   protocols that the server supports.  This allows a client to start

   using a protocol of their choice without added latency, as the lookup

   can be performed concurrently with other name resolution.  The added

   cost of the additional DNS queries is minimal.

   However, SVCB provides no protection against a downgrade attack

   between incompatible protocols.  An attacker could remove DNS records

   for client-preferred protocols, leaving the client to believe that

   only less-prefered, mutually-incompatible options are available.  The

   client only offers compatible options to a server in its TLS

   handshake.  Even if a client were to inform the server that it

   supports a more preferred protocol, the server would not be able to

   act upon it.

   Authenticating all of the information presented in SVCB records might

   provide clients with complete information about server support, but

   this is impractical for several reasons:

   *  it is not possible to ensure that all server instances in a

      deployment have the same protocol configuration, as deployments

      for a single name routinely include multiple providers that cannot

      coordinate closely;

   *  the ability to provide a subset of valid DNS records is integral

      to many strategies for managing servers; and

   *  it is difficult to ensure that cached DNS records are synchronized

      with server state.

   Overall, an authenticated TLS handshake is a better source of

   authoritative information about the protocols that are supported.

4.  Authenticating Incompatible Protocols

   The incompatible_protocols(TBD) TLS extension provides clients with

   information about the incompatible protocols that are supported by

   servers.

   enum {

       incompatible_protocols(TBD), (65535)

   } ExtensionType;

Thomson                    Expires 8 July 2021                  [Page 4]



Internet-Draft    Authenticating Incompatible Protocols     January 2021

   A client that supports the extension advertises an empty extension.

   In response, a server that supports this extension includes a list of

   application protocol identifiers.  The "extension_data" field of the

   value server extension uses the "ProtocolName" type defined in

   [ALPN], which is repeated here.  This syntax is shown in Figure 1.

   enum {

     default(0), svcb(1), quic(2), (255)

   } ProtocolAuthenticationScope;

   opaque ProtocolName<1..2^8-1>;

   struct {

     ProtocolAuthenticationScope scope;

     ProtocolName protocol;

   } IncompatibleProtocol;

   struct {

     select (Handshake.msg_type) {

       case client_hello:

         Empty;

       case encrypted_extensions:

         IncompatibleProtocol incompatible_protocols<3..2^16-1>;

     };

   } IncompatibleProtocols;

         Figure 1: TLS Syntax for incompatible_protocols Extension

   This extension only applies to the ClientHello and

   EncryptedExtensions messages.  An implementation that receives this

   extension in any other handshake message MUST send a fatal

   illegal_parameter alert.

   A server deployment that supports multiple incompatible protocols MAY

   advertise all protocols that are supported.  Each protocol is paired

   with an identifier for the Protocol Authentication Scope, which

   defines how endpoints for that protocol might be discovered; see

   Section 6.

   A server needs to ensure that protocols advertised in this fashion

   are available to the client within the same protocol authentication

   scope.
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   A server MUST omit any compatible protocols from this extension.

   That is, any protocol that the server might be able to select, had

   the client offered the protocol in the

   application_layer_protocol_negotiation extension.  Clients are

   expected to include all compatible protocols in the

   application_layer_protocol_negotiation extension.

   A server MAY limit the incompatible protocols that it advertises to

   those that have similar semantics to protocols that the client lists

   in its application_layer_protocol_negotiation extension.

   The definition of what a server includes is intentionally flexible.

   It is better that a server offer more information than less as the

   needs of a client are not necessarily well reflected in its ALPN

   extension.  However, it might not be feasible for a server to

   advertise all potential protocols; see Section 8 for more discussion

   on this point.

5.  Incompatible Protocol Selection

   This document expands the definition of protocol negotiation to

   include both compatible and incompatible protocols and provide

   protection against downgrade for both types of selection.  ALPN

   [ALPN] only considers compatible protocols: the client presents a set

   of compatible options and the server chooses its most preferred.

   With an selection of protocols that includes incompatible options,

   the client makes a selection between incompatible options before

   making a connection attempt.  Therefore, this design does not enable

   negotiation, it instead provides the client with information about

   other incompatible protocols that the server might support.

   Detecting a potential downgrade between incompatible protocols does

   not automatically imply that a client abandon a connection attempt.

   It only provides the client with authenticated information about its

   options.  What a client does with this information is left to client

   policy.

   In brief:

   *  For compatible protocols, the client offers all acceptable options

      and the server selects its most preferred

   *  For incompatible protocols, information the server offers is

      authenticated and the client is able to act on that

Thomson                    Expires 8 July 2021                  [Page 6]



Internet-Draft    Authenticating Incompatible Protocols     January 2021

   For a protocol like HTTP/3, this might not result in the client

   choosing to use HTTP/3, even if HTTP/3 is preferred and the server

   indicates that a service endpoint supporting HTTP/3 is available.

   Blocking of UDP or QUIC is known to be widespread.  As a result,

   clients might adopt a policy of tolerating a downgrade to a TCP-based

   protocol, even if HTTP/3 were preferred.  However, as blocking of UDP

   is highly correlated by access network, clients that are able to

   establish HTTP/3 connections to some servers might choose to apply a

   stricter policy when a server that indicates HTTP/3 support is

   unreachable.

6.  Protocol Authentication Scope

   A protocol authentication scope includes a set of service endpoints

   that are provided downgrade protection by this mechanism.  There are

   multiple types of protocol authentication scope, each identified by a

   different type.  The type of protocol authentication scope is encoded

   in the "ProtocolAuthenticationScope" enum.

   The type of protocol authentication scope describes how a client

   might learn of all of the service endpoints that a server offers in

   that scope.  If a client has attempted to discover service endpoints

   using the methods defined by the protocol authentication scope,

   receiving an incompatible_protocols extension from a server is a

   strong indication of a potential downgrade attack.

   A client considers that a downgrade attack might have occurred if all

   of the following occur:

   1.  A server advertises that there are endpoints that support a

       protocol that the client prefers over the protocol that is

       currently in use.

   2.  The protocol authentication scope associated with that protocol

       is understood by the client and the client attempted to discover

       services in that scope.

   In response to detecting a potential downgrade attack, a client might

   abandon the current connection attempt and report an error.  A client

   that supports discovery of incompatible protocols, but chooses not to

   make a discovery attempt under normal conditions might instead not

   fail, but it could use what it learns as cause to initiate discovery.
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6.1.  The Default Scope

   The default protocol authentication scope reserves an identifier of

   0.  A client cannot act on information about incompatible protocols

   advertised with this scope.  A server MUST NOT advertise incompatible

   protocols with this scope; however, a client MUST ignore

   advertisements it receives.

   The default protocol authentication scope is reserved for discovery

   methods that have no explicit scope; see Section 7 for more on this

   subject.

6.2.  SVCB Scope

   The SVCB protocol authentication scope uses an identifier of 1.  A

   server that lists incompatible protocols with this scope indicates

   that SVCB records ServiceForm records with the same SvcDomainName

   exist that refer to services that support the indicated protocol.

   The SVCB protocol authentication scope also applies to records that

   use the SVCB form, like HTTPS.

   This ensures that the final choice a client makes between ServiceForm

   SVCB records is protected by this extension.  If the client does not

   receive a SVCB record for a protocol that the server includes in its

   incompatible_protocols extension, then it can assume that this

   omission was caused by an error or attack.

   A choice between AliasForm records (or CNAME or DNAME records) is not

   authenticated, but choices between ServiceForm records is.  This

   allows for server deployments for the same name to have different

   administrative control and protocol configurations.

6.3.  QUIC Version Negotiation Scope

   The QUIC version negotiation protocol authentication scope uses an

   identifier of 2.  A server that lists incompatible protocols with

   this scope indicates that QUIC version negotiation at the same server

   IP and port could be used to learn of incompatible QUIC versions that

   support the indicated protocol.

   Using this protocol authentication scope depends on application

   protocols that are dependent on a specific QUIC version.
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7.  Other Discovery Methods

   For other discovery methods, a definition for protocol authentication

   scope is needed before a client can act on what is learned using the

   incompatible_protocols extension.  That definition needs to define

   how to discover server instances that support all incompatible

   protocols in the scope.

   In particular, a server that is discovered using forms of DNS-based

   name resolution other than SVCB uses the default protocol

   authentication scope; see Section 6.1.  Discovering services in this

   way does not provide enough information to locate other incompatible

   protocols.

   For instance, an HTTPS server that is discovered using purely A or

   AAAA records (and CNAME or DNAME records) might advertise support for

   incompatible protocols, but as there is no way to determine where

   those protocols are supported, a client cannot act on the

   information.  Note that Alternative Services do not change the

   protocol authentication scope.

   Deployments of discovery methods that define a protocol

   authentication scope larger than the default need to ensure that

   every server provides information that is consistent with every

   protocol authentication scope that includes that server.  A server

   that fails to indicate support for a protocol that is within a

   protocol authentication scope does not offer any protection against

   attack; a server that advertises a protocol that the client cannot

   discover risks this misconfiguration being identified as an attack by

   clients.

7.1.  Alternative Services

   It is possible to negotiate protocols based on an established

   connection without exposure to downgrade.  The Alternative Services

   [ALTSVC] bootstrapping in HTTP/3 [HTTP3] does just that.  Assuming

   that HTTP/2 or HTTP/1.1 are not vulnerable to attacks that would

   compromise integrity, a server can advertise the presence of an

   endpoint that supports HTTP/3.
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   Under these assumptions Alternative Services is secure, but it has

   performance trade-offs.  A client could attempt the protocol it

   prefers most, but that comes at a risk that this protocol is not

   supported by a server.  A client could implement a fallback, which

   might even be performed concurrently (see [HAPPY-EYEBALLS]), but this

   costs time and resources.  A client avoids these costs by attempting

   the protocol it believes to be most widely supported, though this

   comes with a performance penalty in cases where the most-preferred

   protocol is supported.

   A server that is discovered using Alternative Services uses the

   default protocol authentication scope.  As use of Alternative

   Services is discretionary for both client and server, a client cannot

   expect to receive information about incompatible protocols.  To avoid

   downgrade, a client only has to limit its use of Alternative Services

   to those that it prefers more than the active protocol.

8.  Operational Considerations

   By listing incompatible protocols, a server does not indicate how to

   find endpoints that support those protocols, only that they exist.

   This ensures that server configuration is minimized, as servers do

   not require tight coordination.  Providing even this much information

   could present operational difficulties as it requires that

   incompatible protocols are only listed when those protocols are

   deployed.

   Server deployments can choose not to provide information about

   incompatible protocols, which denies clients information about

   downgrade attacks but might avoid the operational complexity of

   providing accurate information.

   During rollout of a new, incompatible protocol, until the deployment

   is stable and not at risk of being disabled, servers SHOULD NOT

   advertise the existence of the new protocol.  Protocol deployments

   that are disabled, first need to be removed from the

   incompatible_protocols extension or there could be some loss of

   service.  Though the incompatible_protocols extension only applies at

   the time of the TLS handshake, clients might take some time to act on

   the information.  If an incompatible protocol is removed from

   deployment between when the client completes a handshake and when it

   acts, this could be treated as an error by the client.

   If a server does not list available, incompatible protocols, clients

   cannot learn about other services and so cannot detect downgrade

   attacks against those protocols.
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9.  Security Considerations

   This design depends on the integrity of the TLS handshake across all

   forms, including TLS [RFC8446], DTLS [DTLS], and QUIC [QUIC-TLS].  An

   attacker that can modify a TLS handshake in any one of these

   protocols can cause a client to believe that other options do not

   exist.

   A server deployment that uses AliasForm SVCB records and does not

   uniformly support a client-preferred protocol is vulnerable to

   downgrade attacks that steer clients toward instances that lack

   support for that protocol.  This attack is ineffective for protocols

   that are consistently supported by all server instances.

10.  IANA Considerations

   TODO: register the extension

   TODO: create a registry of scopes
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   This document describes a Transport Layer Security (TLS) extension
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1.  Introduction

   An application-layer protocol often starts with both parties

   negotiating parameters under which the protocol operates; for

   instance, HTTP/2 [RFC7540] uses a SETTINGS frame to exchange the list

   of protocol parameters supported by each endpoint.  This is usually

   achieved by waiting for TLS handshake [RFC8446] to complete and then

   performing the application-layer handshake within the application

   protocol itself.  This approach, despite its apparent simplicity at

   first, has multiple drawbacks:

   1.  While the server is technically capable of sending configuration

       to the peer as soon as it sends its Finished message, most TLS

       implementations do not allow any application data to be sent

       until the Finished message is received from the client.  This

       adds an extra round-trip to the time of when the server settings

       are available to the client.
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   2.  In QUIC, any settings delivered within the application layer can

       arrive after other application data; thus, the application has to

       operate under the assumption that peer’s settings are not always

       available.

   3.  If the application needs to be aware of the server settings in

       order to send 0-RTT data, the application has to manually

       integrate with the TLS stack to associate the settings with TLS

       session tickets.

   This document introduces a new TLS extension, "application_settings",

   that allows applications to exchange settings within the TLS

   handshake.  Through doing that, the settings can be made available to

   the application as soon as the handshake completes, and can be

   associated with TLS session tickets automatically at the TLS layer.

   This approach allows the application protocol to be designed with the

   assumption that it has access to the peer’s settings whenever it is

   able to send data.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in BCP

   14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

3.  Semantics

   Settings are defined to be an opaque blob that is specified by the

   application when initiating a TLS connection.  The settings are meant

   to be a _declaration_ of the protocol parameters supported by the

   sender.  While in this version of the extension the server settings

   are always sent first, this may change in future versions; thus, the

   application MUST NOT vary client settings based on the ones received

   from the server.

   ALPS is _not_ a negotiation mechanism: there is no notion of

   rejecting peer’s settings, and the settings are not responses to one

   another.  Nevertheless, it is possible for parties to coordinate

   behavior by, for instance, requiring a certain parameter to be

   present in both client and server settings.  This makes ALPS

   mechanism similar to QUIC transport parameters

   [I-D.ietf-quic-transport] or HTTP/2 SETTINGS frame [RFC7540], but

   puts it in contrast to similar mechanisms in TLS.
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   Settings are exchanged as a part of the TLS handshake that is

   encrypted with the handshake keys.  When the server settings are

   sent, the identity of the client has not been yet established;

   therefore, an application MUST NOT use ALPS if it requires the

   settings to be available only to the authenticated clients.

   The ALPS model provides applications with a guarantee that the

   settings are available before any application data can be written.

   Note that this implies that when the full handshake is performed, the

   server can no longer send data immediately after sending its Finished

   message; it has to wait for the client to respond with its settings.

   This may negatively impact the latency of the protocols where the

   server sends the first message, however it should be noted that

   sending application data before receiving has not been widely

   supported by TLS implementations, nor has it been allowed in

   situations when establishing client identity through TLS is required.

   ALPS can only be used in conjunction with Application-Layer Protocol

   Negotiation: the client MUST offer ALPN [RFC7301] if advertising ALPS

   support, and the server MUST NOT reply with ALPS unless it is also

   negotiating ALPN.  The ALPS payload is protocol-dependent, and as

   such it MUST be specified with respect to a selected ALPN.

   For application protocols that support 0-RTT data, both the client

   and the server have to remember the settings provided by the both

   sides during the original connection.  If the client sends 0-RTT data

   and the server accepts it, the ALPS values SHALL be the same values

   as were during the original connection.  In all other cases

   (including session resumption that does not result in server

   accepting early data), new ALPS values SHALL be negotiated.

   If the client wishes to send different client settings for the 0-RTT

   session, it MUST NOT offer 0-RTT.  Conversely, if the server would

   send different server settings, it MUST reject 0-RTT.  Note that the

   ALPN itself is similarly required to match the one in the original

   connection, thus the settings only need to be remembered or checked

   for a single application protocol.

4.  Wire protocol

   ALPS is only supported in TLS version 1.3 or later, as the earlier

   versions do not provide any confidentiality protections for the

   handshake data.  The exchange is performed in three steps:

   1.  The client sends an extension in ClientHello that enumerates all

       ALPN values for which ALPS is supported.
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   2.  The server sends an encrypted extension containing the server

       settings.

   3.  The client sends a new handshake message containing the client

       settings.

          Client                                               Server

          ClientHello

          + alpn

          + alps                    -------->

                                                          ServerHello

                                                {EncryptedExtensions}

                                                             + {alpn}

                                                             + {alps}

                                                                  ...

                                    <--------              {Finished}

          {ClientApplicationSettings}

          {Certificate*}

          {CertificateVerify*}

          {Finished}                -------->

                      +  Indicates extensions sent in the

                         previously noted message.

                      {} Indicates messages protected using

                         the handshake keys.

                      *  Indicates optional messages that are

                         not related to ALPS.

              Figure 1: ALPS exchange in a full TLS handshake

   A TLS client can enable ALPS by specifying an "application_settings"

   extension.  The value of the "extension_data" field for the ALPS

   extension SHALL be a ApplicationSettingsSupport struct:

       struct {

           ProtocolName supported_protocols<2..2^16-1>;

       } ApplicationSettingsSupport;

   Here, the "supported_protocols" field indicates the names of the

   protocols (as defined in [RFC7301]) for which ALPS exchange is

   supported; this is necessary for the situations when the client

   offers multiple ALPN values but only supports ALPS in some of them.
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   If the server chooses an ALPN value for which the client has offered

   ALPS support, the server MAY send an "application_settings" extension

   in the EncryptedExtensions.  The value of the "extension_data" field

   in that case SHALL be an opaque blob containing the server settings

   as specified by the application protocol.

   If the client receives an EncryptedExtensions message containing an

   "application_settings" extension from the server, after receiving

   server’s Finished message it MUST send a ClientApplicationSettings

   handshake message before sending the Finished message:

       enum {

           client_application_settings(TBD), (255)

       } HandshakeType;

       struct {

           opaque application_settings<0..2^16-1>;

       } ClientApplicationSettings;

   The value of the "application_settings" field SHALL be an opaque blob

   containing the client settings as specified by the application

   protocol.  If the client is providing a client certificate, the

   ClientApplicationSettings message MUST precede the Certificate

   message sent by the client.

   If the ClientApplicationSettings message is sent or received during

   the handshake, it SHALL be appended to the end of client’s Handshake

   Context context as defined in Section 4.4 of [RFC8446].  In addition,

   for Post-Handshake Handshake Context, it SHALL be appended after the

   client Finished message.

   When performing session resumption with 0-RTT data, the settings are

   carried over from the original connection.  The server SHALL send an

   empty "application_settings" extension if it accepts 0-RTT, and the

   client SHALL NOT send a ClientApplicationSettings message.

5.  Security Considerations

   ALPS is protected using the handshake keys, which are the secret keys

   derived as a result of (EC)DHE between the client and the server.

   In order to ensure that the ALPS values are authenticated, the TLS

   implementation MUST NOT reveal the contents of peer’s ALPS until

   peer’s Finished message is received, with exception of cases where

   the ALPS has been carried over from the previous connection.
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6.  IANA Considerations

   IANA will update the "TLS ExtensionType Values" registry to include

   "application_settings" with the value of TBD; the list of messages in

   which this extension may appear is "CH, SH".

   IANA will also update the "TLS HandshakeType" registry to include

   "client_application_settings" message with value TBD, and "DTLS-OK"

   set to "Y".
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1.  Introduction

   An application-layer protocol often starts with both parties

   negotiating parameters under which the protocol operates; for

   instance, HTTP/2 [RFC7540] uses a SETTINGS frame to exchange the list

   of protocol parameters supported by each endpoint.  This is usually

   achieved by waiting for TLS handshake [RFC8446] to complete and then

   performing the application-layer handshake within the application

   protocol itself.  This approach, despite its apparent simplicity at

   first, has multiple drawbacks:

   1.  While the server is technically capable of sending configuration

       to the peer as soon as it sends its Finished message, most TLS

       implementations do not allow any application data to be sent

       until the Finished message is received from the client.  This

       adds an extra round-trip to the time of when the server settings

       are available to the client.
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   2.  In QUIC, any settings delivered within the application layer can

       arrive after other application data; thus, the application has to

       operate under the assumption that peer’s settings are not always

       available.

   3.  If the application needs to be aware of the server settings in

       order to send 0-RTT data, the application has to manually

       integrate with the TLS stack to associate the settings with TLS

       session tickets.

   This document introduces a new TLS extension, "application_settings",

   that allows applications to exchange settings within the TLS

   handshake.  Through doing that, the settings can be made available to

   the application as soon as the handshake completes, and can be

   associated with TLS session tickets automatically at the TLS layer.

   This approach allows the application protocol to be designed with the

   assumption that it has access to the peer’s settings whenever it is

   able to send data.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in BCP

   14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

3.  Semantics

   Settings are defined to be an opaque blob that is specified by the

   application when initiating a TLS connection.  The settings are meant

   to be a _declaration_ of the protocol parameters supported by the

   sender.  While in this version of the extension the server settings

   are always sent first, this may change in future versions; thus, the

   application MUST NOT vary client settings based on the ones received

   from the server.

   ALPS is _not_ a negotiation mechanism: there is no notion of

   rejecting peer’s settings, and the settings are not responses to one

   another.  Nevertheless, it is possible for parties to coordinate

   behavior by, for instance, requiring a certain parameter to be

   present in both client and server settings.  This makes ALPS

   mechanism similar to QUIC transport parameters

   [I-D.ietf-quic-transport] or HTTP/2 SETTINGS frame [RFC7540], but

   puts it in contrast to similar mechanisms in TLS.
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   Settings are exchanged as a part of the TLS handshake that is

   encrypted with the handshake keys.  When the server settings are

   sent, the identity of the client has not been yet established;

   therefore, an application MUST NOT use ALPS if it requires the

   settings to be available only to the authenticated clients.

   The ALPS model provides applications with a guarantee that the

   settings are available before any application data can be written.

   Note that this implies that when the full handshake is performed, the

   server can no longer send data immediately after sending its Finished

   message; it has to wait for the client to respond with its settings.

   This may negatively impact the latency of the protocols where the

   server sends the first message, however it should be noted that

   sending application data before receiving has not been widely

   supported by TLS implementations, nor has it been allowed in

   situations when establishing client identity through TLS is required.

   ALPS can only be used in conjunction with Application-Layer Protocol

   Negotiation: the client MUST offer ALPN [RFC7301] if advertising ALPS

   support, and the server MUST NOT reply with ALPS unless it is also

   negotiating ALPN.  The ALPS payload is protocol-dependent, and as

   such it MUST be specified with respect to a selected ALPN.

4.  Wire Protocol

   ALPS is only supported in TLS version 1.3 or later, as the earlier

   versions do not provide any confidentiality protections for the

   handshake data.  The exchange is performed in three steps:

   1.  The client sends an extension in ClientHello that enumerates all

       ALPN values for which ALPS is supported.

   2.  The server sends an encrypted extension containing the server

       settings.

   3.  The client sends an encrypted extension containing the client

       settings.
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          Client                                               Server

          ClientHello

          + alpn

          + alps                    -------->

                                                          ServerHello

                                                {EncryptedExtensions}

                                                               + alpn

                                                               + alps

                                                                  ...

                                    <--------              {Finished}

          {EncryptedExtensions}

          + alps

          {Certificate*}

          {CertificateVerify*}

          {Finished}                -------->

                      +  Indicates extensions sent in the

                         previously noted message.

                      {} Indicates messages protected using

                         the handshake keys.

                      *  Indicates optional messages that are

                         not related to ALPS.

              Figure 1: ALPS exchange in a full TLS handshake

   A TLS client can enable ALPS by specifying an "application_settings"

   extension in the ClientHello message.  The value of the

   "extension_data" field for this extension SHALL be a

   ApplicationSettingsSupport struct:

       struct {

           ProtocolName supported_protocols<2..2^16-1>;

       } ApplicationSettingsSupport;

   Here, the "supported_protocols" field indicates the names of the

   protocols (as defined in [RFC7301]) for which ALPS exchange is

   supported; this is necessary for the situations when the client

   offers multiple ALPN values but only supports ALPS in some of them.
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   If the server chooses an ALPN value for which the client has offered

   ALPS support, the server MAY negotiate ALPS by sending an

   "application_settings" extension in its EncryptedExtensions message.

   The value of the "extension_data" field in that case SHALL be an

   opaque blob containing the server settings as specified by the

   application protocol.

   If the client receives an EncryptedExtensions message containing an

   "application_settings" extension from the server, it MUST send an

   EncryptedExtensions message (see Section 4.1) containing an

   "application_extensions" extension.  The value of the

   "extension_data" in this extension SHALL be an opaque blob containing

   the client settings as specified by the application protocol.  A

   server which negotiates ALPS MUST abort the handshake with a

   "missing_extension" alert if the client’s EncryptedExtensions is

   missing this extension.

4.1.  Client Encrypted Extensions

   This specification introduces the client EncryptedExtensions message.

   The format and HandshakeType code point match the server

   EncryptedExtensions message.  When sent, it is encrypted with

   handshake traffic keys and sent by the client after receiving the

   server Finished message and before the client sends the Certificate,

   CertificateVerify (if any), and Finished messages.  It SHALL be

   appended to the Client Handshake Context, as defined Section 4.4 of

   [RFC8446].  It additionally SHALL be inserted after the server

   Finished in the Post-Handshake Handshake Context.

   The client MUST send the EncryptedExtensions message if any extension

   sent in the server EncryptedExtension message contains the CEE token

   in the TLS 1.3 column of the TLS ExtensionType Values registry.

   Otherwise, the client MUST NOT send the message.  The server MUST

   abort the handshake with a "unexpected_message" alert if the message

   was sent or omitted incorrectly.

   The client MAY send an extension in the client EncryptedExtension

   message if that extension’s entry in the registry contains a CEE

   token and the server EncryptedExtensions message included the

   extension.  Otherwise, the client MUST NOT send the extension.  If a

   server receives an extension which does not meet this criteria, it

   MUST abort the handshake with an "unsupported_extension" alert.

   Future extensions MAY use the client EncryptedExtensions message by

   including the CEE token in the TLS 1.3 registry.  The above rules

   ensure clients will not send EncryptedExtensions messages to older

   servers, but will send EncryptedExtensions when some negotiated

   extension uses it.
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   [[TODO: Section 4.6.1 of RFC8446 allows the server to predict the

   client Finished flight and send a ticket early.  This is still

   possible with 0-RTT handshakes here because we omit rather than

   repeat the redudant ALPS information, but, in the general extension

   case, client EncryptedExtensions breaks this.  Extension order is

   unpredictable.  We should resolve this conflict, either by dropping

   that feature or removing flexibility here.]]

4.2.  0-RTT Handshakes

   ALPS ensures settings are available before reading and writing

   application data, so handshakes which negotiate early data instead

   use application settings from the PSK.  To use early data with a PSK,

   the TLS implementation MUST associate both client and server

   application settings, if any, with the PSK.  For a resumption PSK,

   these values are determined from the original connection.  For an

   external PSK, this values should be configured with it.  Existing

   PSKs are considered to not have application settings.

   If the server accepts early data, the server SHALL NOT send an

   "application_settings" extension, and thus the client SHALL NOT send

   a "application_settings" extension in its EncryptedExtensions

   message.  Unless the server has sent some other extension which uses

   client EncryptedExtensions, the client SHALL NOT send an

   EncryptedExtensions message.  Instead, the connection implicitly uses

   the PSK’s application settings, if any.

   If the server rejects early data, application settings are negotiated

   independently of the PSK, as if early data were not offered.

   If the client wishes to send different client settings for the

   connection, it MUST NOT offer 0-RTT.  Conversely, if the server

   wishes to use send different server settings, it MUST reject 0-RTT.

   Note that the ALPN itself is similarly required to match the one in

   the original connection, thus the settings only need to be remembered

   or checked for a single application protocol.  Implementations are

   RECOMMENDED to first determine the desired application protocol and

   settings independent of early data, and then decline to offer or

   accept early data if the values do not match the PSK.  This preserves

   any ALPN and ALPS configuration specified by the calling application.

5.  Security Considerations

   ALPS is protected using the handshake keys, which are the secret keys

   derived as a result of (EC)DHE between the client and the server.
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   In order to ensure that the ALPS values are authenticated, the TLS

   implementation MUST NOT reveal the contents of peer’s ALPS until

   peer’s Finished message is received, with exception of cases where

   the ALPS has been carried over from the previous connection.

6.  IANA Considerations

   IANA will update the "TLS ExtensionType Values" registry to include

   "application_settings" with the value of TBD; the list of messages in

   which this extension may appear is "CH, EE, CEE".
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1.  Introduction

   Transport Layer Security protocol [RFC8446] allows the clients to use

   an abbreviated handshake in cases where the client has previously

   established a secure session with the same server.  This mechanism is

   known as "session resumption", and its positive impact on performance

   makes it desirable to be able to use it as frequently as possible.
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   Modern application-level protocols, HTTP in particular, often require

   accessing multiple servers within a single workflow.  Since the

   identity of the server is established through its certificate, in the

   ideal case, the resumption would be possible to all of the domains

   for which the certificate is valid (see [PERF] for a survey of

   potential practical impact of such approach).  TLS, starting with

   version 1.3, defines the SNI value to be a property of an individual

   connection that is not retained across sessions ([RFC8446],

   Section 4.2.11).  However, in the absence of additional signals, it

   discourages using a session ticket when the SNI value does not match

   ([RFC8446], Section 4.6.1), as there is normally no reason to assume

   that all servers sharing the same certificate would also share the

   same session keys.  The extension defined in this document allows the

   server to provide such a signal in-band.

2.  Conventions and Definitions

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",

   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and

   "OPTIONAL" in this document are to be interpreted as described in BCP

   14 [RFC2119] [RFC8174] when, and only when, they appear in all

   capitals, as shown here.

3.  The Extension

   The server MAY send a resumption_across_names(TBD) extension in a

   NewSessionTicket message.  That extension SHALL have an empty body.

   If the extension is sent, it indicates that the client MAY use the

   ticket for any SNI value for which the certificate presented by the

   server is valid.  The server MUST handle the ticket correctly by

   either resuming and using a new SNI provided by the client, or by

   ignoring the ticket.

   The server MAY send the extension if it reasonably believes that any

   server for any identity presented in its certificate would be capable

   of accepting that ticket.  The server SHOULD NOT send the extension

   otherwise, since, if the client follows the single-use ticket policy

   recommended by [RFC8446], sending the ticket results in it being no

   longer usable regardless of whether resumption has succeeded.

4.  Security Considerations

   This document does not alter any of the security requirements of

   [RFC8446], but merely lifts a performance-motivated "SHOULD NOT"

   recommendation from Section 4.6.1.  Notably, it still relies on the

   server certificate being re-validated against the new SNI at the

   session resumption time.
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   If a client certificate has been associated with the session, the

   client MUST use the same policy on whether to present said

   certificate to the server as if it were a new TLS session.  For

   instance, if the client would show a certificate choice prompt for

   every individual domain it connects to, it MUST show that prompt for

   the new host when performing cross-domain resumption.

   Cross-domain resumption, like other similar mechanisms (e.g. cross-

   domain HTTP connection reuse), can incentivize the server deployments

   to create server certificates valid for a wider range of domains than

   they would otherwise.  However, any increase in the scope of a

   certificate comes at a cost: the wider is the scope of the

   certificate, the wider is the impact of the key compromise for that

   certificate.  In addition, creating a certificate that is valid for

   multiple hostnames can lead to complications if some of those

   hostnames change ownership, or otherwise require a different

   operational domain.

5.  IANA Considerations

   IANA (will add/has added) the following entry to the "TLS

   ExtensionType Values" table of the "Transport Layer Security (TLS)

   Extensions" registry:

   Value  TBD

   Extension Name  resumption_across_names

   TLS 1.3  NST

   Recommended  N

   Reference  This document
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