Improving the Reaction of IPv6 SLAAC to Flash Renumbering Events
(draft-ietf-6man-slaac-renum-00)

Fernando Gont
Jan Zorz
Richard Patterson

6man Working Group
IETF 108. July 28, 2020
Mitigations

- Employ more appropriate PIO lifetimes
 - Use more appropriate lifetimes on the router/sending side
 - Cap received values on the host/receiving side
- Spread information in a timelier manner
 - Honor PIOs with small valid lifetimes
 - Propagate information when an interface becomes an “advertising interface”
- Deprecate/Invalidate stale information
 - Trigger detection of stale information
 - Deprecate/invalidate stale information if appropriate
- We propose improvements in all these areas
More appropriate Lifetimes (router side)

• Current default PIO lifetimes
 • Preferred Lifetime: 1 day (!)
 • Valid Lifetime: 1 month (!)

• Proposal:
 • Specify these values as a function of the Router Lifetime

• Example:
 • Default PIO Preferred Lifetime: Router Lifetime
 • Default PIO Valid Lifetime: N * Router Lifetime
More appropriate Lifetimes (host side)

- Proposal: cap received Lifetimes at hosts:
 - Preferred Lifetime: Router Lifetime
 - Valid Lifetime: N * Router Lifetime

Only when:
 - Router Lifetime != 0 && Preferred Lifetime != 0xffffffff &&
 Valid Lifetime != 0xffffffff

Since these values represent special cases:
 - Router Lifetime == 0 → don’t use this router as the default router
 - {Preferred, Valid} Lifetime == 0xffffffff → Infinity
Honor small PIO Valid Lifetimes

- Section 5.5.3, item e) of RFC4861 prevents reducing PIO Valid Lifetime < 2 hours
 - Considered an attack vector?

- Attackers have a zillion other vectors!
 - Flood hosts with bogus RIOs or PIOs
 - Spoof RA with Lifetime == 0 (disable router)
 - etc., etc., etc.

- You do first hop security, or you don’t

- Proposal: honor all PIO Valid Lifetime values
 - If router is aware of situation, it can signal it and avoid the problem
Interface Initialization

- Replace this section (Section 6.2.4) from RFC4861:

 In such cases, the router MAY transmit up to MAX_INITIAL_RTR_ADVERTISEMENTS unsolicited advertisements, using the same rules as when an interface becomes an advertising interface.

- with:

 In such cases, the router SHOULD transmit MAX_INITIAL_RTR_ADVERTISEMENTS unsolicited advertisements, using the same rules as when an interface becomes an advertising interface.

- i.e., it is key that information propagates in a timely manner

- Jen also suggests that we should also recommend this when information changes on the router-side
Deprecating/invalidating stale info

- Section 4.5 contains an algorithm to detect, deprecate and invalidate stale information
- There have been objections to this algorithm
- Current proposed algorithm works as follows:
 - **Trigger**: An RA that advertises PIOs but misses a previous PIO
 - **Deprecation/Invalidation**: Upon the previous event, reduce the Preferred and Valid Lifetime (where Valid Lifetime >> Preferred Lifetime)
 - PIO will be quickly unpreferred, and will be eventually invalidated – or otherwise refreshed if it’s still valid
Deprecating/invalidating stale info (II)

- If RA contains GUA PIOs, but a previous GUA PIO is missing:
 - Reduce PL= ~5 seconds, VL: 100’s seconds for missing GUA prefix
- If RA contains ULA PIOs, but a previous ULA PIO is missing:
 - Reduce PL= ~5 seconds, VL: 100’s seconds for missing ULA prefix
- If multiple routers announced the prefix → just disassociate the prefix with the corresponding router
Other things that have been suggested

- **Philip:**
 - Have the host “sample” the server and see if it splits RA info
 - If it doesn’t, we can react more aggressively. If it does, wait extra time or poll server.

- **Others:**
 - Rather than passively deprecate information, perform some form of active testing
 - e.g. send a probe using the current prefix, or poll the router with an RS
A possible alternative

- No matter what we do, it seems to boil down to:
 - A condition that triggers detection of stale information
 - Possible Deprecation/Invalidation

- One possible approach:
 - An RA that misses a PIO triggers an unicast RS
 - possibly after a few seconds to accommodate split RAs
 - An unicast RS is sent to the router
 - and possibly retransmitted, if necessary
 - If previous information is not refreshed, it is deprecated and eventually invalidated