Encrypted DNS Discovery and Deployment Considerations for Home Networks

July 2020

M. Boucadair (Orange)
T. Reddy (McAfee)
D. Wing (Citrix)
N. Cook (Open-Xchange)
Agenda

- Scope & Approach
- Main Changes since IETF#107
- One Discussion Point
- Next Steps
Target *add* Work Item

Excerpt from the WG Charter:

“Define a mechanism that allows clients to **discover DNS resolvers** that support encryption and that are available to the client either on the **public Internet** or on **private or local networks**”

With a focus on home networks deployment specifics
Home Network Specifics

• The CPE is **key** to, e.g.,
 – Provide local services
 – Apply per-device policies
 – Isolate infected home devices
 – Offer better localized caching
 – Ensure IPv4 service continuity
 – Collaborate with the network to filter DDoS attacks close to the source
 – ...
Approach

• Rely upon existing mechanisms to distribute DNS server information (DNS authentication domain name (ADN))
 – DHCP, DHCPv6, and RA

• These mechanisms can be used:
 – Between the CPE and an ISP’s network and/or
 – Within the home network
 • Between the CPE and an internal router
 • Between endhosts and a router/CPE

• Typical communication flow:
 – Clients ask for one or more Encrypted DNS (e.g., DoT, DoH)
 – Servers reply with ADN(s) if the requested Encrypted DNS is supported
Main Changes Since IETF#107

• **Pick** one solution for the discovery of URI templates
 – Dedicated DHCP/RA option vs. Directly from the server

• **Simplify** the procedure for involving a forwarder in the CPE

• Add a new section to discuss **legacy** CPEs

• Update the **Security** section to discuss both active and passive attacks (RFC3552)
Main Changes Since IETF#107 (1)

- **Pick** one solution for the discovery of URI templates
 - Dedicated DHCP/RA option vs. Directly from the server

https://doh.example.com/.well-known/resinfo

The ADN discovered using DHCP/RA

Well-known URI requested in `draft-btw-add-rfc8484-clarification`
Main Changes Since IETF#107 (2)

- **Simplify** the procedure for involving a forwarder in the CPE

1. The ISP assigns a name (sub-domain of its encrypted DNS name) and public certificate to the CPE
2. Receives the Encrypted DNS configuration in DHCP/RA options
3. Announces its name in the DNS DHCP/RA

Internet

LAN

ISP#1

CPE

H

Do53 Server

DoT Server

DoH Server

Auto-upgrades based on a check that is beyond discovery
Main Changes Since IETF#107 (2)

- **Simplify** the procedure for involving a forwarder in the CPE

(1) The ISP assigns a name (sub-domain of its encrypted DNS name) and public certificate to the CPE

(2) Receives the Encrypted DNS configuration in DHCP/RA options

(3) Announces its name in the DNS DHCP/RA

Auto-upgrades, *e.g.*, because left-most label of the pre-configured AND would match the subjectAltName value in the server certificate (CPE)

Left-most label matching is permitted if the domains and CPE are managed by the ISP and an (out-of-band) agreement with the client to enable wild-card white-listing for the ISP managed subdomains
Discussion Point: Locating Services

• **Current design**: The ADN and a list of IP@es are returned using separate options:
 – ADNs are returned using a NEW option
 – The list of IP@ is returned using existing DNS options
 – *Straightforward* if all services terminate on the same @
 • If not, and if the client requested more than one service, the client will need to try to list to find the @ that corresponds to each DNS service: *Inefficient*?

• **Alternate design**: Return both the ADN and a list of @es in the NEW option
 – Solve the above inefficiency
 – But *exacerbates the message size* if all services terminate on the same @

Any preference?
Some Frequent Questions (1)

Does the I-D mandate the CPE to be a managed CPE?
- No. The options can be supported by managed and unmanaged CPEs

Does the I-D impose an ISP’s Encrypted DNS server to be returned in the options?
- No. The server can be operated by the ISP, public, private, or local

Does the I-D mandate the CPE to always relay the DNS information received from the access network?
- No. This is configuration-based

Does the I-D mandate the CPE to always behave as a forwarder?
- No. This is deployment-specific and configuration-based
Some Frequent Questions (2)

Can DoH/DoT servers be hosted on CPEs?

- **Yes.** CPEs are hardened to host network security services, see for example, https://prplfoundation.org/project/prplwrtt, https://iopsys.eu/product/, https://securehomeplatform.mcafee.com, https://securingsam.com/

Can CPEs be upgraded?

- **Not every CPE can be upgraded but CPEs can be updated**
 - This is the model that is usually followed for managed CPEs.
 - In addition to the use TR-69/TR-369, LxC/Docker is also considered to host the network/application services on CPE to ease upgrade and avoid failures; see for example technicolor and openwrt-funding-round-two
Next Steps

• Consider adopting this document as a WG item

• Questions?
Appendix
Sample Encrypted DNS Deployments: Managed CPEs

(2) Relays the DNS information

(1) Receives the DNS configuration

(1) Receives the DNS configuration

Configures a 3rd Party DNS Server. The one received from the ISP will be ignored

Communicates the 3rd Party DNS information

DoT/DoH: Means DoT and/or DoH
Sample Encrypted DNS Deployments: Unmanaged CPEs

(1) Receives the DNS configuration

(2-3) Relays the DNS information

(1) Configures a 3rd Party DNS Server

(2) Announces the DNS information
Verified Resolvers

- **Simplify** the procedure for involving a forwarder in the CPE

1. The ISP assigns a name (sub-domain of its encrypted DNS name) and public certificate to the CPE
2. Receives the Encrypted DNS configuration in DHCP/RA options
3. Announces its name in the DNS DHCP/RA

Auto-upgrades if the client succeeds to verify the server’s signatory as [draft-reddy-add-server-policy-selection-03](https://tools.ietf.org/html/draft-reddy-add-server-policy-selection-03)
Main Changes Since IETF#107 (3)

- Add a new section to discuss *legacy* CPEs

- Fallback to use the special-use domain name to discover the DoH/DoT server and the RESINFO RRtype to retrieve the list of supported DoH services
 - I-D.pp-add-resinfo

- *The DHCP/RA option to discover ADN takes precedence over special-use domain name* since the special-use domain name is susceptible to both internal and external attacks whereas DHCP/RA is only vulnerable to internal attacks