
Enabling Privacy-Aware Zone Exchanges Among
Authoritative and Recursive DNS Servers

Nikos Kostopoulos, Dimitris Kalogeras and Vasilis Maglaris

NETwork Management & Optimal Design (NETMODE) Laboratory

School of Electrical & Computer Engineering
National Technical University of Athens (NTUA)

Motivation: DNS Water Torture Attacks

▪ DDoS attacks can be mitigated more efficiently close to their origins

▪ However, AXFR requests are typically restricted for security reasons

Our use case for DNS: Scrubbing services, Recursive DNS Server Filters

Contribution

▪ A privacy-aware schema for the efficient distribution of Authoritative DNS
Server zones to Recursive DNS Servers or scrubbing services

▪ Extending previous work (IEEE CloudNet 2019):
Bloom Filters were used to map the names of large DNS zones and filter
suspicious DNS traffic in cloud infrastructures

▪ Design Requirements:
→ Privacy-aware zone distribution
→ Efficient zone mapping (storage, filtering latency, consumed bandwidth)
→ Compatibility with the existing DNS infrastructure (AXFR, IXFR requests)
→ Support for incremental updates

▪ Relying on probabilistic data structures as datastores for valid Authoritative
DNS Server zone names. These fulfill the previous design requirements.

→ In this paper, we implement the zone distribution mechanism
→ Instead of Bloom Filters, we use Cuckoo Filters that support item deletion

Background: Bloom Filters

▪ All bits are initially set to 0.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Each element is hashed with k different hash functions.
Corresponding positions (hash results mod m) are set to 1.

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0

word1

0 0 0 1 0 0 0 1 0 1 0 1 0 0 1 0

word1 word2

Bits may be shared

by multiple items

Is element x stored in the Bloom Filter?

False Negatives (Item in the filter, lookup says it is not): Impossible
False Positives (Item not in the filter, lookup says it is): Possible

m bits

k = 3

▪ Bitarrays (of m bits) used for

Approximate Membership Lookups:

Bloom Filter based Approaches for DNS

Privacy-aware approaches, but deletions are not supported

▪ Related approaches:
- Mapping DNSSEC zone names to accelerate authenticated responses
- Logging DNS data
- Detecting botnet traffic
- Tracking newly observed domain names

Cuckoo Filters vs Bloom Filters:

→ Cuckoo Filters are more time and space efficient

→ Cuckoo Filters support element deletion

Background: Cuckoo Filters

𝒉1 𝒙 = 𝒉𝒂𝒔𝒉 𝒙

൯𝒉2 𝒙 = 𝒉1 𝒙 ⊕ 𝒉𝒂𝒔𝒉(𝒇𝒈𝒑 𝒙

fgp(x) evicted to alternate bucketOne of the two buckets is
randomly selected

▪ Cuckoo Filters are characterized by:
- Number of available buckets m
- Fingerprint entries b per bucket

▪ Elements are inserted as fingerprints in entries of a 2D array
- Fingerprints of size f bits are calculated using the function fgp()

▪ Each element x is assigned
a pair of buckets ℎ1 and ℎ2:

𝒇𝒈𝒑 𝒙

𝒇𝒈𝒑 𝒙

Inserting x’ fingerprint 2 times
𝒉1 𝒙 𝒉2 𝒙

𝒇𝒈𝒑 𝒙 𝒇𝒈𝒑 𝒙

Inserting y’ fingerprint
𝒉1 𝒚 𝒉2 𝒚

𝒇𝒈𝒑 𝒚

x and y share a bucket

▪ Example for m=4, b=2:

Partial-Key Cuckoo
Hashing Technique

Baseline Design

▪ Privacy-Aware Zone Manager

▪ Hashed DNS Zones

▪ Incremental DNS Zones

Implementation: The Privacy-Aware Zone Manager

Builds and maintains the Cuckoo Filters whose fingerprints are used to
create and revise the privacy-aware DNS zones

Actions:

- Murmurhash3 for fingerprint and hash calculations

• Retrieves Plaintext DNS Zone RR’s, hashes their FQDN into
fingerprints, creates Cuckoo Filters and the Hashed DNS Zones

• Retrieves Plaintext DNS Zone changes regularly, updates the in-memory
Cuckoo Filters and the Incremental DNS Zones

- Implemented in Python 3

• Ignores RR’s whose value was updated, but their FQDN did not change

• Special treatment for RR’s that share FQDN’s with others, but differ in RR
type and/or value (usage of frequency counters)

Implementation: Hashed DNS Zones (1)

These zones hold the FQDN’s of the Plaintext DNS Zones
hashed and mapped in Cuckoo Filters (Use of AXFR)

Serialization format (zone hszn.tld):

Cuckoo Filter parameters & algorithms:

- Number of buckets m, fingerprint size f, number of entries b

- Algorithms used for fingerprint and candidate buckets calculation

Implementation: Hashed DNS Zones (2)

Example for the 1st data RR of the .ntua.gr Hashed DNS Zone

• The fingerprints of multiple Cuckoo Filter buckets are mapped
sequentially within a single TXT type RR

• Buckets with vacant entries require a trailing dot as they do not
have explicit boundaries. Full buckets do not.

• Equally sized fingerprints of 𝑓/4 Bytes (hex digits).

• Fingerprints requiring less than 𝑓/4 Bytes are prepended with 0’s

• TXT type RR limit: 255 Bytes

Cuckoo Filter with:

- f=12 bit fingerprints

- b=4 entries / bucket

- 82 fingerprints mapped

Rules:

Implementation: Incremental DNS Zones

They map name changes of Plaintext DNS Zones (Use of IXFR)
Serialization format (zone inczn.tld):

Rules:
• last-serial: Changes prior to this value are incorporated in the

Hashed DNS Zones. Starting point for Recursive DNS Servers to
begin retrieving data from an Incremental DNS Zone

• sequence: Defines if a Hashed DNS Zone is stale and must be
downloaded again, e.g. when Cuckoo Filter parameters change

• Updates: The fingerprint of the name that changed, action (name
added/deleted) and buckets of the fingerprint in the Cuckoo Filter

Evaluation: Testbed & Dataset

Testbed:

- Authoritative DNS Server: VM with 2 vCPUs, 16 GB RAM

- DNS Software: BIND9

Available DNS Zones:

- .ntua.gr: 8,294 distinct FQDN’s

- .su: 109,719 distinct FQDN’s

- .se: 1,387,690 distinct FQDN’s

- .ru: 5,325,231 distinct FQDN’s

Hashed DNS Zones Privacy-Awareness

Target: Assess the capabilities of Cuckoo Filters to withstand
brute force attacks in the context of DNS

Cuckoo Filters store names hashed

- FQDN’s with 1st label longer than 5 chars protected with high certainty

- Longer 1st labels result into more False Positives

- Zone: ntua.gr

- FP ratio: 0.3%

- 37 possible characters
(letters, digits, hyphen)

Evaluation of True Positives (TP’s) and False Positives (FP’s) looking up
all permitted name combinations with 1st label length of 3-7 chars

, but attackers may attempt to gain
insight into zone contents by performing brute force attacks

Hashed DNS Zones Serialization

Target: Determine the applicability of diverse data serialization
formats for mapping zone names into Hashed DNS Zones

Considered serialization formats:
- Cuckoo Filter with multiple buckets mapped within each RR
- Cuckoo Filter with a single bucket mapped within each RR

- Bloom Filter with multiple Bytes mapped within each RR

Βandwidth consumption during an AXFR request:

The Cuckoo Filter with multiple buckets/RR format outperforms the others

Hashed DNS Zones Management

Target: Latency comparison of actions related to managing the
Hashed DNS Zones using both Bloom Filters and Cuckoo Filters

Actions:
- Initial creation of the Hashed DNS Zones in memory (.ru zone)
- Updating the data structures (1,000 deletions, 1,000 insertions)

• Bloom Filters are created faster than Cuckoo Filters due to the element
eviction process of Cuckoo Filter insertions (single time action)

• Cuckoo Filters rapidly incorporate changes (Bloom Filters are rebuilt)

Conclusion & Future Work

Future Work:

Our approach is promising for distributing Authoritative DNS Server
zone names efficiently, while preserving privacy

▪ Investigate recently proposed probabilistic data structures,
e.g. Morton Filters, Xor Filters and Vacuum Filters

▪ Employ data plane programming to protect the open channel used
for relaying zone exchanges (XDP)

▪ Adapt solution to the mitigation of amplification NXNSAttacks

▪ Develop a Distributed and Federated Learning detection
mechanism that will reduce our zone sizes by excluding
infrequently requested names

THANK YOU!

Enabling Privacy-Aware Zone Exchanges Among
Authoritative and Recursive DNS Servers

Open-Sourced Code:

https://github.com/nkostopoulos/dnspriv

Contact Details: nkostopoulos@netmode.ntua.gr

