# BGP-MCAST

draft-ietf-bess-bgp-multicast-02

Z. Zhang, L. Giuliano, K. Patel, I. Wijnands, M. Mishra, A. Gulko

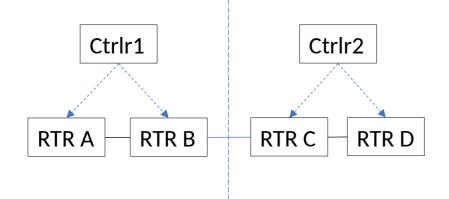
draft-ietf-bess-bgp-multicast-controller-03

Z. Zhang, R. Raszuk, D. Pacella, A. Gulko

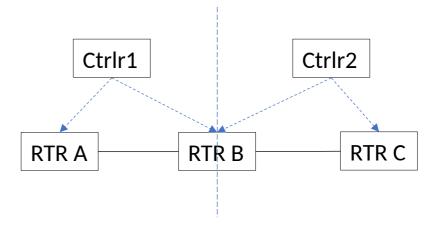
Presented by Z. Zhang For BESS, IETF108

## draft-ietf-bess-bgp-multicast-02

- Hop-by-hop signaling of IP multicast tree and mLDP tunnel
- Added RD to NLRI to support signaling in VRFs
  - Mainly to support signaling from controllers
  - In theory also as hop-by-hop replacement of BGP-MVPN signaling over the core
    - But not pursuing that
- Added inter-region support
  - Inline signaling through a region
    - Added Multicast RPF EC to address the problem of internal routers not having routes to source/root in case of BGP-LU
      - Similar to PIM RPF Vector and mLDP Recursive FEC
  - Overlay signaling over a region
    - Similar to mLDP over targeted session
  - Interworking with controller signaled multicast
    - Stitching for heterogeneous regions that use hop-by-hop or controller signaling


#### draft-ietf-bess-bgp-multicast-controller-03

- TEA enhancements
  - Upstream information is now encoded in TEA itself
  - MP2MP support
- Added multi-domain section
- Added SR P2MP support


#### **TEA Enhancements**

- Upstream information is now encoded in TEA itself
  - As a tunnel with a **RPF** sub-TLV
  - Upstream Router's IP Address in NLRI is *this* router's address
    - The Leaf A-D route is "from" downstream routers so the upstream router is *this* router
- Incoming Label Stack
  - Each tunnel in the TEA for MP2MP has an Incoming Label Stack for incoming traffic and regular Label Stack for outgoing traffic
  - The RPF tunnel in the TEA for P2MP only has an incoming Label Stack for incoming traffic, and other tunnels in the TEA for P2MP only have a regular Label Stack for outgoing traffic

#### Multi-domain Support: Different controllers for different domains



- Native IP Multicast
  - Ctrlr1 & Ctrlr2 independently signals to RTR B & C their respective downstream and upstream interface
- Labeled Multicast
  - Ctrlr1 & Ctrlr2 coordinate the label to use on the B-C link, or,
  - RTR C uses hop-by-hop signaling to B



- RTR B receives Leaf A-D routes from both Ctrlr1 & Ctrlr2. Normally only one of them is chosen as the best route and triggers forwarding state.
- In this case, RTR B is provisioned as a border router and must look for the routes from both controllers to stitch the two segments together

#### SR P2MP Support

- SR P2MP has been accepted by Spring/PIM WGs
  - Spring Replication Segment
    - Building block Replication state on individual nodes of a tree
  - PIM SR P2MP policy for P2MP trees
- An MPLS SR P2MP tree is no different from mLDP/RSVP-TE P2MP tunnel in forwarding plane
  - Control plane differences: controller calculated and signaled
  - Signaling could be Netconf/PCEP/BGP
    - BGP signaling could be BGP SR-TE based or BGP-MCAST based
    - "Different ways to skin a cat"
- Only a new NLRI type is needed for BGP-MCAST based signaling
  - "Same way to skin a different cat"

## **Replication Segment**

- A Replication Segment is identified by (Root-ID, Tree-ID, Node-ID), which is encoded in a new type (0x83) of S-PMSI route, which is in turn included in the Leaf A-D route signaled from the controller
- Replication information is encoded in Tunnel Encapsulation Attribute
  - In case of SR-MPLS, nothing new needed
    - Nothing explicitly tied to SR except the SR P2MP tree and Replication Segment terms
  - Optionally, TEA can have SR Policy tunnels
    - This ties to SR explicitly

|             | +-                                 | ++                                  |                          |
|-------------|------------------------------------|-------------------------------------|--------------------------|
|             |                                    | Route Type - 4 (Leaf A-D)           |                          |
| L<br>E<br>A | <br>  L +<br>  E  <br>  A  <br>  F | Length (1 octet)                    |                          |
|             |                                    | Route Type - 0x83 (SR P2MP S-PMSI)  | +<br>  S<br>-    <br>  P |
|             |                                    | ++<br>    Length (1 octet)          |                          |
| F           |                                    | ++                                  | M                        |
|             | R                                  | RD (8 octets)                       | S                        |
|             | 0                                  | ++                                  | ΙI                       |
|             | ίυ                                 | Root ID (4 or 16 octets)            | i                        |
| Ν           | іт                                 | ++                                  | i N                      |
| L           | İE                                 | Tree ID (4 octets)                  | I L                      |
| R           | 1 -                                | ++                                  | I R                      |
| т           | I K                                | Upstream <b>Router's IP Address</b> | I T                      |
| -           |                                    |                                     | -+                       |
|             |                                    | Originating Router's IP Address     | - •                      |
|             | ⊥ I<br>⊥ I                         |                                     |                          |
|             | T - 7                              | T- TT                               |                          |

#### SR Policy Tunnel

- Originally defined to instantiate an SR P2P Policy
  - Specifying Binding SID and outgoing SID list for the SR P2P Policy
- When used in TEA for SR P2MP, it refers to a pre-installed SR P2P policy as a replication branch
  - Binding SID used to lookup the pre-installed outgoing SID list
  - One-SID SID list in the tunnel is the outgoing SID for the tree

#### SR P2MP Policy

- An SR P2MP Policy defines an SR P2MP Tree
  - Identified by (root-id, tree-id)
  - Includes a set of Candidate Paths (CPs) and a set of Leaf Nodes
- An SR P2MP tree's CP is instantiated with Replication Segments for the root, leaf, and replication nodes for that CP stitched together
- An SR P2MP Policy is instantiated on the tree root by attaching a BGP Community Container to Leaf A-D routes for the root's Replication Segments
  - CP priority
  - Optional Atom TLV
    - An IPv4/v6 Address List for the set of leaves
    - An UTF-8 string for policy name

#### Summary

- BGP signaled multicast for IP multicast, mLDP and SR P2MP is getting more and more mature
  - Draft work
  - POC implementation
- Needs to spell out more precise procedures
- Will present to IDR on TEA changes