Cachable OSCORE

draft-amsuess-core-cachable-oscore

Christian Amsüss, Marco Tiloca

2020-07-31
Background

multicast-notifications
Comparison with ICNs
OSCON
Caching and OSCORE

POST / 2.01
KID and PIV in request \} uncachable

\ldots and it’s only one client anyway
For every complex problem, there is a solution... that is simple, neat and wrong insufficient

Group OSCORE Fetch / 2.05 magically hit cache

} verification fails
Consensus request

- Pick request sender KID and PIV
- Trust in the request\(^1\)

The ideal candidate to generate a Consensus Request is the server: “Ticket Requests”

\(^1\)It’d be a pity if someone requested /whom-i-know, and gave you the response claiming they requested /whom-to-trust
Ticket Request example

<table>
<thead>
<tr>
<th>Client</th>
<th>Proxy</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>enc(GET /a, C:1)</td>
<td>--</td>
<td>-------------------------</td>
</tr>
<tr>
<td>enc(GET /a, S:1)</td>
<td>----</td>
<td>(cache hit)</td>
</tr>
<tr>
<td></td>
<td></td>
<td><--- enc(2.05 data, S:2)</td>
</tr>
</tbody>
</table>

Assuming pre-existing multicast setup
multicast-notifications’s Phantom Requests are Ticket Requests

1. Great for observations
2. Great for large representations\(^2\)
3. Not so great for everything else

\(^2\text{Unless outer-block mode is used. Which you want. In which case see 3.}\)
Magically hitting the cache key

Client Proxy

enc(GET /a, C:1), H(/a) ------------------>
<- enc(2.05 data, S:2) Resp-For enc(GET /a, S:1)

... provided H(/a) is derived the same for every request

(actually it’s rather hashing the complete plaintext|AAD)
Now that we all agree...

Client

```
enc(GET /a, C:H(/a))  -------------------
<-------------------- enc(2.05 data, S:1)
```

Proxy

3 Also very nice for B.2 mode
Now that we all agree...

Client

```
enc(GET /a, C:H(/a)) -------------------
```

Proxy

```
<------------------------ enc(2.05 data, S:1)
```

- Hash over all input to encryption (incl. AAD)
- PartIV too short for sufficient hash – ID-Detail
- In group it’s encrypt-and-sign – deterministic client with private key known to group members

[^3]: Also very nice for B.2 mode
Questions

- Practicality
- Cryptography
- Interest in CoRE