INTERNET of THINGS
Merger of

- draft-raza-ace-cbor-certificates-04
- draft-mattsson-tls-cbor-cert-compress-00
- draft-mattsson-cose-cbor-cert-compress-00
Introduction

• Challenge with PKI for IoT: size and encoding of X.509 public key certificates

• Based on RFC 7925, which specifies a certificate profile for IoT deployments

• Encoding with CBOR reduces the certificate size significantly with known performance benefits

• This draft specifies CBOR encoding/compression of RFC 7925 profiled X.509 certificates
 – Two variants, CBOR compressed X.509 certificate & native, differing only in what is being signed.
 – Achieves over 50% compression in many cases
Overall design objectives

• Very compact certificate encoding for cases where this is needed
 – Compare LAKE benchmarks (draft-ietf-lake-reqs)
 – Targeting non-IoT as well, but must enable optimized format for constrained IoT

• Restrict to reasonable subset of certificates suitable for IoT
 – Not targeting general certificates, e.g. containing a lot of human readable data
 – The application area motivates a restricted scope
 – Trade-offs for discussion
Restrictions

• From the RFC 7925 profile:
 – Only EC public keys for all certificates in the chain, including CA certificates.
 – Subject contains EUI64 or FQDN
 – Only four certificate extensions (SubjectAltName, BasicConstraints, Key Usage, Extended Key Usage)

• In addition
 – Subject is EUI64 or FQDN
 – Issuer encoding:
 • DN must be possible to encode as CBOR map
 • If only CN is present then as text
Main updates in version-01

- Simplified encodings
 - Invertible formula for representation of Validity
- Number of clarifications
- IANA registry entries for COSE and TLS
Overall discussion theme

- Compactness / saving bytes
- Generality, how to encode as many IoT relevant X.509 certificates as possible
- Comments on the mailing list from
 - Henk Birkholz, HB
 - Ilari Liusvaara, IL
 - Russ Housley, RH
 - Michael Richardson, MR
 - Carsten Bormann, CB
Comments and discussions (1 of 5)

Encoding of the issuer field (HB, IL, MR)

• Current draft: CBOR map (int => bytes)

• Discussion on the representation of types
 – Need to handle repeated attribute types?
 – Need to encode PrintableString and Utf8String?
 • If so, what is the preferred encoding?
Comments and discussions (2 of 5)

Encoding of algorithm types and parameters (IL, MR, CB)

- Current draft:
 - signatureAlgorithm : int,
 - subjectPublicKeyInfo_algorithm : int
 - Support by Ilari that int-encoding is sufficient for relevant cases

- Discussion on the need of RSA code points.
 - NOTE that RFC 7925 restricts signature type to EC:
 - "certificates are signed using ECDSA in this profile. This is not only true for the end-entity certificates but also for all other certificates in the chain, including CA certificates"
Comments and discussions (3 of 5)

Encoding of extensions (HB, IL, RH)

- Current draft: 4 bits encoding of Extensions
 - Would require ordering of extensions, to recreate original content

- ExtendedKeyUsage, EKU: discussion of how to uniquely order extensions and content
 - Proposals for encoding of EKU
 - use array of pairs
 - further details on the list
 - New value of EKU needed for EDHOC
Comments and discussions (4 of 5)

Encoding of extensions (HB, IL, RH)

- BasicConstraints and encoding of CA certificate
 - Current draft: Only supports CN field of subject
 - Works only if CAs create self-signed domain specific certificates for issuing new CBOR certificates
 - Alternatively, explicit encoding of Pathlen + distinguish between no BasicConstraints & BasicConstraints with cA=False and pathLen absent
 - Alternatively, remove CA flag entirely
Comments and discussions (5 of 5)

Comment regarding classification:

• TLS certificate compression or TLS certificate type
 – Further input is welcome