DRIP Authentication Formats

draft-wiethuechter-drip-auth-03
Adam Wiethuechter
DRIP WG – IETF 108; July 30, 2020
We Are Flying DRIP!
New York UAS Test Site (NYUASTS)

• AX Enterprize has been flying and doing testing with Trustworthy Multipurpose Remote ID (TMRID)
 • TMRID: Python3 implementation of DRIP drafts
 • auth-formats-00, identity-claims-00, uas-rid-03
 • Extends AX's Python3 implementation of ASTM F3411-19

• Notable findings:
 • Bluetooth 4 can be detected and decoded up to ~300ft (91m) at 400ft AGL
 • Becomes unreliable around 350ft@400ft AGL away
 • Bluetooth 5 can be detected and decoded to ~1800ft (548m) at 400ft AGL
 • Full Certificate messages are obtained in a wide range from 2.21 seconds to 45 seconds from receipt of first certificate page
 • Still using draft-v00 authentication format, working on updating implementation
From the DRIP Charter

DRIP’s goal is to specify how RID can be made trustworthy and available in both Internet and local-only connected scenarios.
The DRIP Auth. Solution

• Use the HHIT as the UAS ID
 • See draft-moskowitz-drip-uas for details

• Use the small signature size of EdDSA25519
 • Easily fits in ASTM Authentication Message
 • UA HHIT (16) + Timestamp (4) + Signature (64) = 84 bytes out of 109 bytes
 • 25 bytes left for data to be signed

• Increase Auth. Page limit from 5 to 10
 • We have approached ASTM and they have been receptive to this change
 • Now we have 224 bytes!

• Add Forward Error Correction to help loss of pages in Bluetooth 4.X

• Send short Certificate via Authentication Message making RID trustworthy in local-only scenarios
Authentication Formats
Background and Updates
Background & Problem

• ASTM F3411-19 Broadcast RID
 • Disjointed information delivery
 • Identity information of UA sent in Basic ID
 • Position information of UA sent in Location
 • But no ID in the Location Message
 • Authentication information of UA sent in Auth
 • All of these are sent and received separately (under Bluetooth 4.X)!
 • Fragmented data across Authentication Message pages

• Overall a lack of trust in Broadcast messages
 • Especially in Bluetooth 4.X
Bluetooth Background

• Why so small?
 • Bluetooth 4 legacy frames only give 25 bytes to play with (after Bluetooth headers)
 • 1 byte is for a main header in ASTM format that is always present – now only 24 bytes of data to work with per frame/page
ASTM Authentication

• Authentication Message
 • 5 pages long with a 109 byte max payload \((17 + 23 \times 4)\)
 • Designed to authenticate Message Packs (of up to 5 messages in Bluetooth 5.X frame)
High level draft changes since V00

• Lots of typos
 • Confidence in spelling phonetically != Actually spelling of words correctly

• New format
 • Single ASTM AuthType (0xD selected from Private range; needs allocation into Reserved range from ASTM)
 • Cleaner framing design
 • General and Wrapped – more on this later
 • New DRIP Header
 • Modified shortly after v02 went in

• Addresses DRIP Requirements GEN1, GEN2 and GEN3
 • Certificates address GEN1 and GEN3
 • Provable Ownership and Provable Registration
 • Other DRIP AuthTypes address GEN2
 • Provable Binding
DRIP Framing Structures

General Frame, Wrapper Frame
General Frame

- DRIP Header
 - 1 bit to signal FEC
 - 7 bits for DRIP AuthTypes
- Reed Solomon FEC always fills last page
 - Taken over all pages of Auth. Message
 - FEC is SHOULD on Bluetooth 4, SHOULD NOT on Bluetooth 5
 - See Backup Slides for details
- 223 bytes of data w/o FEC
- 200 bytes of data w/FEC
DRIP Header Details

• Independent FEC flag
 • Previously was tied to auth. type being sent
 • Each DRIP AuthType specifies SHOULD/SHOULD NOT use of FEC

• 128 possible DRIP AuthTypes
 • 9 total currently defined

• 7 bit space broken into 5 areas
 • Half (8) of Wrapped Messages defined
 • One (1) Certificate defined

• Question to WG:
 • Is this the best way to carve up this single byte?
Reed Solomon FEC

- Bluetooth (both 4 and 5) have a 3 byte CRC in every frame
 - Full frame is dropped if CRC check fails within Bluetooth stack
 - No signal to upper layers that a frame is being dropped

- To RID applications, we missed a full Authentication page (under Bluetooth 4)
 - Pages are numbered so we know which pages are missing in a set (sets are defined using the AD Counter)

- Reed Solomon can correct 23 bytes of error when we know positions of data lost – which we do!
 - So if we rebuild frames filling in known header bytes (Message Type, ASTM Version, Authentication Type and Page Number) we can correct for 23 bytes which is missing page data

- For Bluetooth 4, FEC gives us an advantage of recovery if any single page is lost in transmission
 - If any more are lost recovery is impossible but if that happens probably more issues going on anyways

- For Bluetooth 5, FEC is useless as it already has FEC at the frame level before CRC check
 - Only with LE Coded PHY, which is what is specified by ASTM

- Also for Bluetooth 5, FEC is useless as per ASTM the Message Pack must be used
 - This uses the 255 byte extended Bluetooth 5 payload to fit multiple ASTM Messages in single frame
 - So if we lose a Bluetooth 5 frame we are already losing anyways as full Authentication Message was together, not physically paged like Bluetooth 4
Wrapper Frame

- Fits inside General Frames DRIP Auth. Data
- Authentication Data
 - 116 bytes with FEC
 - 139 bytes w/o FEC
- Signature computed over all preceding data fields in Wrapper Frame
 - Avoid DRIP Header can change (FEC bit) after signing
[Trust] Timestamp Details

• Different types of timestamp in ecosystem:
 • ASTM Authentication Message style [4 bytes]
 • Offset from 01/01/2019 00:00:00
 • Defined encoding and decoding by ASTM to/from UNIX time
 • Used for DRIP Trust Timestamp in Wrapper Frame
 • UNIX style [4 bytes]
 • Raw UNIX style timestamp
 • Used in DRIP Certificates
 • UTM style (X.509 Validity --> ASN.1)

• Question to WG:
 • What should DRIP adopt for timestamps?
Bluetooth 4.X Auth. Formats

Wrapped ASTM Message(s), Certificate, Manifest(s)
1-5 Wrapped ASTM Message(s)

• DRIP AuthTypes 1-5
 • AuthType signals number of messages being wrapped

• Wrapper Frame Auth. Data filled with ASTM Messages
 • Messages must be in Message Type order

• Special Case: 5 Wrapped Messages
 • Acts as a pseudo-ASTM Message Pack (Type 0xF) over Bluetooth 4
 • FEC MUST be disabled to fit all messages
 • Can fit all ASTM Messages excluding an Auth. Message
Manifests

• DRIP AuthTypes 6, 7

• Wrapper Frame Auth. Data filled with hashes
 • Hashes are of previous non-paged messages sent

• Two special hashes for pseudo-blockchain
 • Links manifests together
 • Hash of previous manifest
 • Hash of current manifest
 • Order of operations?

• Two variants based on hash length; 8 bytes and 4 bytes
 • 27 hashes with 4 bytes, 12 hashes with 8 bytes
 • Uses same hash algorithm as HHIT (in UAS RID this is cSHAKE128)
 • Can use OGA ID of HHIT to signal different hashing methods
Certificate: Registry on Aircraft (Cra)

• DRIP AuthType 16
• General Frame DRIP Auth. Data filled with Cra
 • Exactly 200 bytes in length
 • Binding between entities, asserting trust
 • Contains HI of UA; instant verification of UA
 • Registry HHit used for lookup on local cached Registry list
 • On Observer device, only ones trusted by User
• See draft-wiethuechter-drip-identity-claims for details
Bluetooth 5.X Auth. Formats

0 Wrapped ASTM Message(s), Certificate
Certificate: Registry on Aircraft (Cra)

• DRIP AuthType 16
• General Frame DRIP Auth. Data filled with Cra
 • See draft-wiethuechter-drip-identity-claims
• Last 25 bytes of Message Pack can be filled with another ASTM Message
 • Suggested to use Location Message
0 Wrapped ASTM Message(s)

• DRIP AuthType 0

• Special case of Wrapped ASTM Message(s) format
 • Only used for Message Pack under Bluetooth 5.X

• Wrapper Frame Auth. Data virtually filled with ASTM Messages in Message Pack
 • Messages must be in Message Type order

• Discussion for WG
 • Perhaps a better title?
DRIP AuthType Tree

ASTM Authentication Data

General Frame
- DRIP Header
- DRIP Authentication Data
 [Reed Solomon FEC]

Certificate

Wrapper Frame
- HHIT
- Trust Timestamp
- Payload
- Signature

0 Wrapped ASTM Messages
- 1-5 Wrapped ASTM Message(s)

Manifest

8 Byte Manifest

4 Byte Manifest
Discussion

Questions, Comments, Concerns?

Title text: I guess I should be signing stuff, but I've never been sure what to sign. Maybe if I post my private key, I can crowdsource my decisions about what to sign.

https://xkcd.com/1553/