BPSec COSE Contexts

BRIAN SIPOS

RKF ENGINEERING SOLUTIONS

IETF108

Motivations for COSE Contexts

- BPSec security contexts are tailored to specific situations and optimized for minimum-encoded-size security blocks.
- BPSec focus is on symmetric-keyed algorithms.
- For internet-facing nodes, possibly as subnetwork gateways, there is a need for PKI-integrated security.
 - This was indicated also by SECDIR review of BPSec draft.
- Don't want to reinvent the wheel, and CBOR Object Signing and Encryption (COSE) already provides syntax and semantics for current and future security algorithms.

Goals for Contexts

- No not alter BPSec structures or requirements.
 - This is purely an extension within the existing security context mechanism.
- Handle current symmetric-keyed and PKI algorithms.
 - Leverage existing algorithm definitions.
- Follow algorithm-use and key-use best practices.
 - Avoid key overuse, use random content encryption keys.
- Inherit future gains made by COSE off-the-shelf algorithms.

Proposed Security Contexts

- One new context for each block type:
 - COSE Integrity
 - COSE Confidentiality
- No parameters to the context; each COSE result is self-contained.
- Full COSE messages in each target's result.
 - Reuse COSE message tags as result type codes.
 - Allows an application to use any current or future COSE algorithm types (and combinations)
 - Interoperability requirements in COSE Profile (next slide)
 - Keep it simple!

Proposed COSE Profile

- Required algorithms for AES-GCM-256 and HMAC-SHA2-256.
- Recommended algorithms for EC and RSA signing and key-wrap.

+	+		+	+
BPSec Block	COSE Layer	Name 	Code	Implementation Requirements
Integrity 	1	HMAC 256/256	5	Required
Integrity	1	ES256	-7	Recommended
Integrity	1	PS256	-37	Recommended
Confidentiality	1	A256GCM	3	Required
Confidentiality	2	A256KW	-5	Recommended
Integrity or Confidentiality	2	ECDH-ES + A256KW	-31	Recommended
Integrity or Confidentiality	2	RSAES-OAEP w/ SHA-256	-41	Recommended

Table 3: Interoperability Algorithms

Clarifications to BPSec drafts

- •The current BPSec draft and the interoperability contexts draft does not require either BIB or BCB to include target-block or primary block data in an algorithm's additional authenticated data (AAD).
 - This allows a trivial reply attack where a block and it's associated ASB are simply copied from one bundle to another.
 - This kind of replay is mentioned in the security considerations of BPSec but there is no discussion of recommended behavior of security contexts to deal with this threat.
- •The COSE contexts require AEAD encryption and require that both BIB and BCB include the primary block and target block metadata as AAD.
 - This binds the security result to that exact block and its containing bundle.
- •It means that AAD cannot change after BIB or BCP is applied.
 - The primary block is required to be immutable already.
 - What valid operation would modify target block data? Block types and numbers are also immutable.

Desired WG Direction

- •This is not intended to replace or supersede existing BPSec interoperability contexts (<u>draft-ietf-dtn-bpsec-interop-sc-01</u>)
- •The point here is to allow BPSec in a PKI environment in the very near term.
 - COSE is a known quantity with existing coding and processing tools.
- •If accepted, requirements and examples could be tightened up.
 - Existing draft should be implementable and testable as-is.
 - Examples come from scripts in the referenced repository.
 - An example of all recommended uses could be provided if desired.